GRADATION EVALUATION

The Key to High
Performance
Asphalt
Pavements

WHAT DOES IT TAKE?

Rut Resistance

- Coarse aggregate skeleton locked together with strong fine aggregate and high stiffness binder.
- Fatigue Resistance
 - Sufficient asphalt
 binder in thick stiff layers

Durability

Low air voids (high in place density) in moisture resistant mixture

WHICH IS THE BEST?

Voids

COARSE AGGREGATE SKELETON

How much room is there for fine aggregate?

This is OK

Coarse Aggregate

Fine Aggregate

NO COARSE AGGREGATE SKELETON

This is not OK

Coarse Aggregate

Fine Aggregate

What is Coarse and Fine?

- ✓ 37.5mm mix versus 9.5mm mix
- ✓ All aggregate blends contain a certain amount and size of voids
- ✓ Determine the average void size according to the Nominal Maximum Particle Sieve (NMPS)
- ✓ Determine the Primary Control Sieve (PCS)
- Establish the volume of CA and corresponding amount of voids to be filled with FA

0.22 times nominal maximum size

Loose Unit Weight for CA

The minimum amount of coarse aggregate per unit volume, without any compactive effort applied, that will provide particle to particle contact.

Rodded Unit Weight for CA

The amount of coarse aggregate per unit volume, with compactive effort applied, to increase the particle to particle contact.

CA Interlock

Loose condition

The loose and rodded conditions serve as boundaries for CA interlock

Rodded

Lower limit

Upper limit

CA Ratio Example 19mm NMPS

CHANGING COARSE SPLIT

CA Ratio Effects

- ✓ As the CA ratio increases, the voids in the mix will increase
- \checkmark Generally, the ratio should be between 0.4 0.8
- Low ratios are more prone to segregation

Fine Aggregate Evaluation

- ✓ As the FA_C ratio increases, the voids in the mix will decrease (ratio range ~ 0.25 0.5)
- ✓ As the FA_F ratio increases, the voids in the mix will decrease (ratio range ~ 0.25 0.5)
- ✓ The **FA_C** ratio has the **most** influence on VMA

GRADATION SELECTION

What to do?

- ✓ Loose weight coarse
- Rodded weight coarse
 - Loose weight fine
- ✓ Rodded weight fine

COARSE AGGREGATE

Loose unit weightRodded unit weight

75 pcf 84 pcf

What do I want?

- -75 pcf? rocks are just touching
- -84 pcf? rocks are packed as tight as dry rodding
- -60 pcf? rocks are not even touching
- 90 pcf rocks tighter than rodded weight, too much

EFFECT OF CHOSEN WEIGHT ON GRADATION

CHANGING COARSE SPLIT

Field Value of the Bailey Method

- Design is starting point
- Same principles still apply
- ✓ Things will change!
- How do the design parameters relate to
 -VMA loss
 - compactibili
 - compactibility
 - -segregation

