Simple Performance Test

Northeast Asphalt User/Producer Group Ramon Bonaquist, P.E. Advanced Asphalt Technologies, LLC

What is it?

- Test conducted on the mixture that indicates how it will perform
- Identify inferior mixes
 - Rutting
 - Cracking
- Design
- QC/QA Operations

Lots of Possibilities

- Gyratory Compactor
 - NCHRP 9-7 Field Procedures and Equipment to Implement SHRP Asphalt Specifications
 - NCHRP 9-16 Relationship Between Superpave Gyratory Compaction Properties and Permanent Deformation of Pavements In-Service

Lots of Possibilities

- Loaded Wheel Testers
 - Transportation Research Circular E-C016
 - NCHRP 9-17 Accelerated Laboratory Rutting Tests: Asphalt Pavement Analyzer
- SHRP Shear Test
 - NCHRP 9-7 Field Procedures and Equipment to Implement SHRP Asphalt Specifications
 - NCHRP 9-18 Field Shear Test of Hot Mix

Lots of Possibilities

- Fundamental Tests
 - NCHRP 9-19 Superpave Support and Performance Models Management
 - Stiffness
 - Permanent Deformation
 - Creep
 - Strength
 - PennDOT Evaluation of Triaxial Strength
 - Indirect Tensile Strength

General Conclusion

- Many show promising correlation with pavement performance
- How do you select the best?
 - Fundamental versus Empirical
 - Mixture Design versus Quality Control
 - Specimen Preparation
 - Size
 - Lab compacted versus field sample
 - Equipment and Training Costs

Specific Projects

- NCHRP 9-19 Task C
 - Simple Performance Test Recommendations
 - Dynamic Modulus
 - Repeated Load Permanent Deformation
 - Creep
- NCHRP 9-18 Field Shear Test
 - QC Application
- PennDOT Triaxial Study
 - Indirect Tensile Strength

NCHRP 9-19 Task C

- University of Maryland and Arizona State University
 - Matt Witczak PI
 - Subcontractors
 - Fugro BRE
 - AAT
 - Heritage Research
- Fundamental Test

Candidate Simple Performance Tests

- (12) Stiffness and Deformation/Strength Related Tests
- Rutting Stiffness
 - Dynamic (Complex) Modulus
 - Dynamic (Wave Propogation) Modulus
 - Predicted Stiffness from Material Properties
 - SST-G* Complex Modulus
 - G*-Field Shear Tester
- Rutting Deformability
 - Triaxial Shear Strength
 - Repeated Load Permanent Deformation (Triaxial) ASU
 - Repeated Shear Permanent Deformation
 - Static Creep / Flow Time
- Cracking
 - Indirect Tensile (Strength, Creep, Fatigue)
 - Dynamic (Complex) Modulus
- Over 80 Test Response Parameters

27-28 July 2000

- ASU - ASU
 - ASU
 - AAT
 - UMD
 - ASU
 - Hertiage
 - ASU
 - ASU
 - ASU

Experimental Sites

MnRoad

WesTrack

FHWA-ALF

27-28 July 2000

FHWA-ALF

ALF	Binder	Nominal	Asphalt	Air Void	Rut Depth,
Lane	Туре	Size, mm	Content, %	Content, %	(10,000 Passes) mm
5	AC-10	19.0	4.80	8.6	39.3
7	Styrelf	19.0	4.90	11.9	12.0
8	Novophalt	19.0	4.70	11.9	4.4
9	AC-5	19.0	4.90	7.7	48.1
10	AC-20	19.0	4.90	9.3	36.3
11	AC-5	37.5	4.05	6.0	22.3
12	AC-20	37.5	4.05	7.4	15.2

MnRoad

MNROAD	BINDER	NOMINAL	ASPHALT	AIR VOID	RUT DEPTH,
CELL	TYPE	SIZE, MM	CONTENT, %	CONTENT, %	(NOV 98)
16	AC-20	12.5	5.08	8.2	0.175
17	AC-20	12.5	5.45	7.7	0.205
18	AC-20	12.5	5.83	5.6	0.195
20	120/150Pen	12.5	6.06	6.3	0.67
22	120/150Pen	12.5	5.35	6.5	0.28



WesTrack

WesTrack	Binder	Nominal	Asphalt	Air Void	Rut Depth,
Section	Туре	Size, mm	Content, %	Content, %	(1.5M ESAL) mm
2	PG 64-22	12.5 Fine	5.02	10.4	6
4	PG 64-22	12.5 Fine	5.24	6.6	7
15	PG 64-22	12.5 Fine	5.55	8.7	8
7	PG 64-22	12.5 Coarse	6.28	6.9	36
23	PG 64-22	12.5 Coarse	5.78	4.9	13
24	PG 64-22	12.5 Coarse	5.91	7.2	22

Compare Actual Performance to Measured Laboratory Response

Subjective Classification

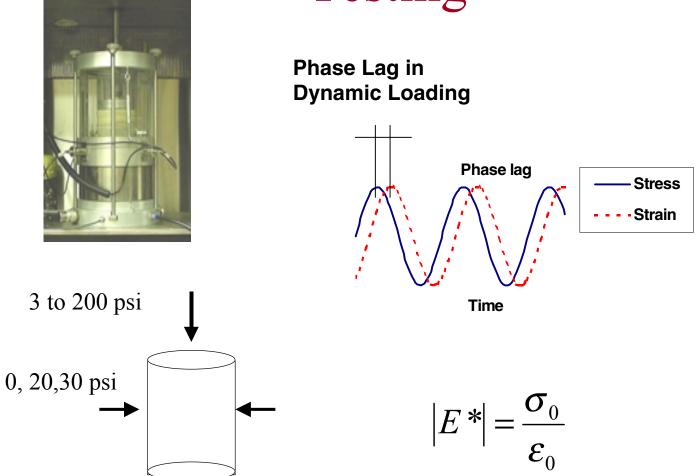
Color	CRITERIA	R ²	Se/Sy	
	Excellent	> 0.90	< 0.350	
	Good	0.70 - 0.89	0.36 - 0.55	
	Fair	0.40 - 0.69	0.56 - 0.75	
	Poor	0.20 - 0.39	0.76 - 0.90	
	Very Poor	< 0.19	> 0.90	

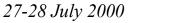
Findings - Rutting

Test	Mode	R ²	Se/Sy	Rating	Selected
Modulus	Traixial	0.91	0.31	Excellent	X
woulds	Shear	0.79	0.52	Good	
Repeated Load	Triaxial	0.90	0.36	Good	X
	Shear	0.88	0.39	Good	
Croop	Triaxial	0.91	0.32	Excellent	X
Creep					

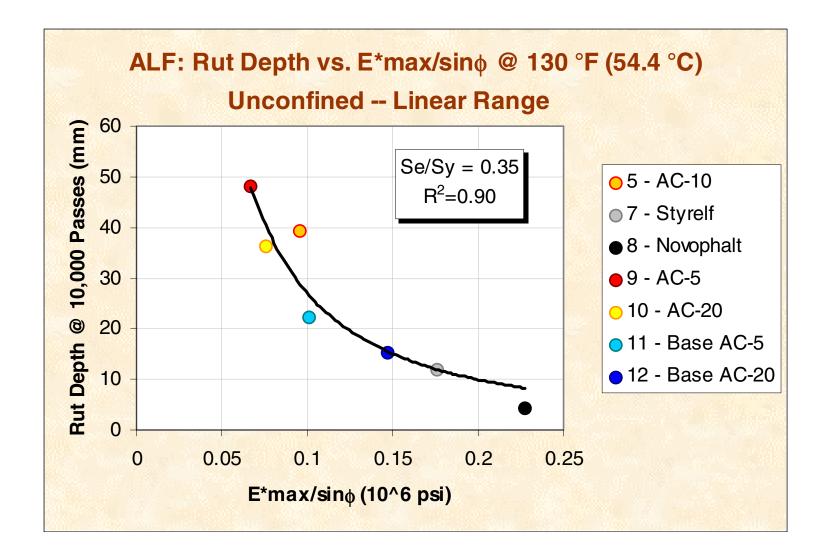
Clear Advantages

- Triaxial Modulus
 - Clear tie to 2002 Design Guide
 - Rational Limiting Stiffnesses
 - Indicator of Fatigue Cracking
 - Optimization
- Triaxial Creep
 - Simplicity of Testing Equipment
- Triaxial Repeated Load
 - Best represents actual loading

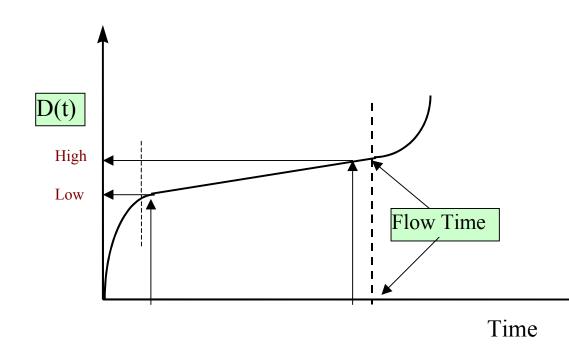


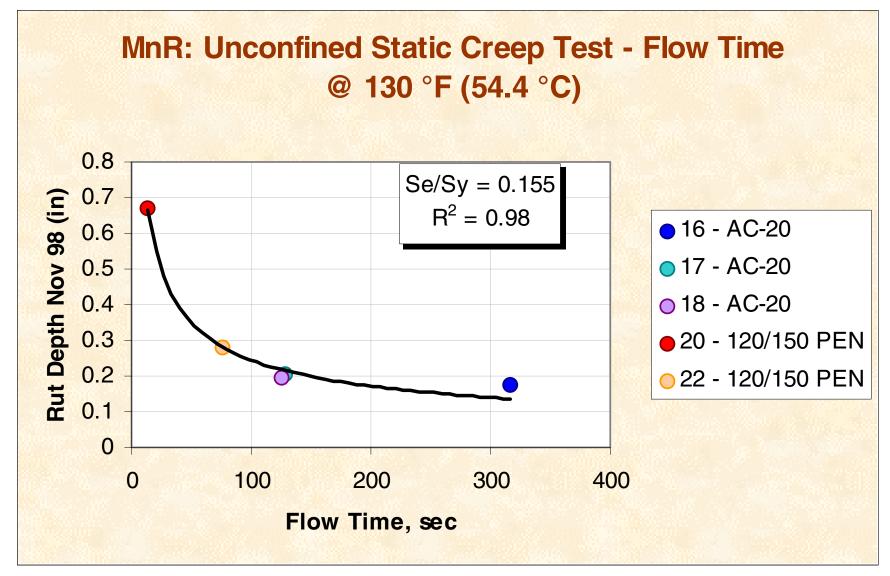

Disadvantage

- Specimen Size
 - 100 mm Diameter by 150 mm High
 - Parallel Ends
- Needed to Ensure Fundamental Properties
- Sawed and Cored From Oversized Gyratory Specimens

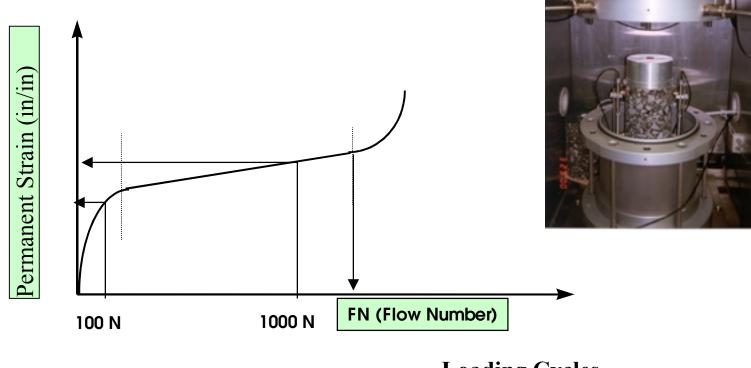


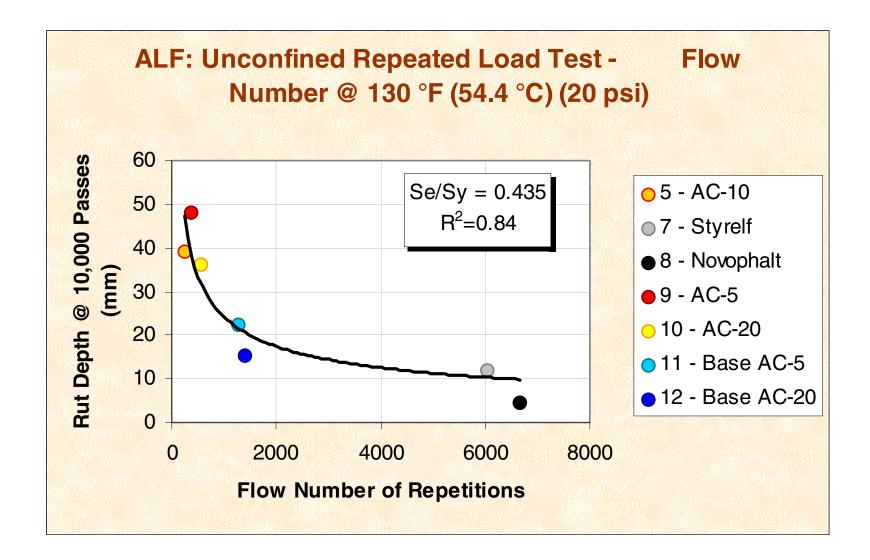
E* -- Triaxial Complex Modulus Testing





Creep - Flow Time Test





Repeated Load Permanent Deformation Test

Loading Cycles

Further Work

- Field Verification
 - Underway as part of NCHRP 9-19
 - Establish and Validate Acceptance Limits
 - Introduce Equipment to Users
- First Article Equipment
 - New NCHRP Study NCHRP 9-29
 - Procure and Evaluate Two First Articles

NCHRP 9-18 Field Shear Test

- Penn State
 - Don Christensen PI
 - AAT
 - EnduraTec Systems

