

Tire/Pavement Noise

	Effects:	Sound intensity ratio: (rel. hearing threshold)	A-weighted SPL in dB: Typical sound source at this level:		се		
	Serious hearing damage	100 000 000 000 000	140 dB	Â	Space rocket launch, in vicinity of launch pad		
	Hearing damage and pain	10 000 000 000 000	130	-6-0-	Jet engine (25 m distance)	
a	Hearing damage fter short exposure	1 000 000 000 000	120		THRESHOLD OF PAIN Air-raid alarm (5 m distance)		
	Serious hearing damage hazard	100 000 000 000	110	÷	Rock music concert, close to stage	FH	WA Guideline
	Hearing hazard	10 000 000 000	100	Cano la	Jet plane take-off (300 m)		– 67 dB(A) -
	Some hearing hazard	1 000 000 000	90		Noisy industrial hall		
	Health effects	100 000 000	80		Heavy truck, 70 km/h (10 m distance)		
Se	ome health effects evere annoyance	10 000 000	70		Car, 60 km/h (10 m distance)		🗹
	Annoyance	1 000 000	60		Normal conversation (1 m distance)		
41	Some annoyance	100 000	50		Quiet conversation (1 m distance)		
G	ood environment	10 000	40	00	Subdued radio music		
		1 000	30	82	Whispering (1 m distance)		
		100	20		Quiet bedroom		
		10	10	NA.	Rustling leave		
	Uncomfortably "quiet"	(reference)	0		Anechoic room for sound measurements		
				H	EARING THRESHOLD		2

Noise terminology - dB

- Acousticians use a logarithmic scale when measuring Sound Pressure Levels (SPL)
- The unit for SPL is the dB
 - 0 dB is the threshold of hearing
 - 120 dB is the threshold of pain
 - 1 dB is the smallest difference in sound pressure level that our hearing is capable of perceiving under ideal circumstances

Noise Terminology – dB(A)

Noise Terminology - frequency

- Frequency spectrum graphical representation of SPL (dB) as a function of frequency
- Hearing range 20 to 20000 Hz
- 1000 Hz is considered the middle of the band
- Sound at low frequencies is less attenuated by distance than sound at high frequencies
- Thus low frequency sound will propagate further from the road

Frequency Spectrum for a Pavement

Nature of highway noise

Tire/pavement

- Generally the primary source at highway speeds (greater than 35 mph)
 - Level is dependent on vehicle type, vehicle speed and tire type
- Other sources include
 - Vehicle engine, exhaust, etc.
 - Aerodynamic sources

7

Nature of highway noise

Sound absorption of pavement

- Greater absorption – less sound reflected off road and into communities
- Some quiet pavements absorb high frequency sound

Nature of Noise –

- For speeds greater than 35 mph for cars and 45 mph for trucks pavement/tire noise dominates. (Billera, et al., TRR 1601)
- Sandburg Cross-Over Speeds (the speed above which the tire/road noise is more important than the power train noise

Cars

Cruising – 25 Km/hr (16 mph)

Accelerating - 45 km/hr (28 mph)

Trucks

Cruising – 35 km/hr (22 mph)

Accelerating – 50 km/hr 32 mph)

Measurement of Traffic Noise

- Source measurement – measures the effect of quiet pavement on the tire/pavement interaction at the source
- Wayside measurements – measures the effects of quiet pavements on communities

Source measurement

Meets ISO 11819-2

NCAT Close Proximity Noise Trailer

NCAT

0

Microphones

for

ogy

NCAT Trailer

Advantages

- Isolates tire/pavement noise
 - **Great for comparing road surfaces**
- Efficient and inexpensive
- Measures the road properties along extended length of road surface
- Disadvantages
 - Isolates tire/pavement noise

Cannot determine the quiet pavement benefits in communities – correlation with wayside measurements is being investigated

Single vehicle/tire type is represented

NCAT CPX Trailer

AZ CPX Trailer

Wayside measurements

Statistical pass-by method

- Based on measuring the noise level from a minimum of 180 single-vehicle passbys
- Can compare pavements at different locations
- Microphones generally set at 50 ft from roadway

Controlled pass-by

Same as statistical pass-by but with limited number of vehicles

Time-averaged method

- Noise-level is measured continuously over a time period
- Traffic counts & metrological data is needed

Wayside Measurements – Site Layout

Wayside measurements

Advantages

- Results account for mix of traffic
- Results account for noise from all sources (tire, engine, exhaust)
- Helps to determine environmental effects & noise abatement policy

Disadvantages

- Time consuming and costly
- Examines road properties at only one location
- Strict measurement conditions (site geometry, traffic density, etc.)

Knowledge Gap

- Can the source measurements be correlated to the wayside measurements?
- Two preliminary studies have been done – they showed it could be done and the difference is about 23 dB(A)
- Thus, if the trailer measures 95 dB(A) – at 25 feet from the source the noise level would be 72 dB(A)
- More work is needed!!

Noise Characteristics of Pavement Surfaces

Pavements tested

Locations

NCAT test track, Michigan, Alabama, New Jersey, Maryland, Colorado, Nevada, California, Arizona, Texas, Florida, Virginia

Numbers of surfaces tested

- Total 244 surfaces
- HMA 201 surfaces
- PCCP 43 surfaces

Currently conducting testing in –

Minnesota and Colorado

Transverse Tining

Average 103.6 dB(A)

Longitundinal tining

Average 99.6 dB(A)

Diamond Ground

DENSE GRADED HMA

OLYMPUS

Average of all testing – 95 dB(A)

Range 93 to 99 dB(A)

SMA

OLYMPUS

Average 97.6 dB(A)

Range 95.5 to 100.5

SMA

Route	State	Noise Level	Mix	Date Placed
MD 50	MD	95.5 dB(A)	9.5 mm	2002
I – 270	MD	97.7 dB(A)	12.5 mm	2003
I - 495	MD	98.9 dB(A)	12.5 mm	2003
I - 83	MD	99.0 dB(A)	19 mm	1994
US 50	СО	96.2 dB(A)	12.5 mm	2002
I – 70 W	СО	96.3 dB(A)	19 mm	2003
I – 225 N	СО	96.9 dB(A)	19 mm	2002
US 1	NJ	100.5 dB(A)	19 mm	-

The smaller the nominal maximum size of the aggregate the lower the noise level.

OGFC

OLYMPUS

The OGFC Absorbs Part of the Sound Energy

Open Graded Mixes

Alabama OFGC					
Average:	97.2				
Range:	95 to 98				
Nevada – No rubber					
📕 1 yr - 93.7, 6 yr -	- 93.6, 8 yr – 93.8				
■ 11 yr - 98.8					
Arizona – Rubber	modified				
Average: 92.0					

OGFC Comparisons

GRADATIONS

Gradation	Arizona ¹	Nevada ¹	Colorado ²	AL 1 – 7 ²
³ / ₄ inch	-	-	100	100
¹ / ₂ inch	-	100	98	89
3/8 inch	100	95	64	56
No. 4	38	45	11	14
No. 8	6	-	8	9
No. 16	-	11	6	-
No. 200	1.2	2	3.3	3.2
Fineness Modulus	5.42	5.00	6.00	6.14
Air Voids	-	-	21 %	17 %
Noise Level	91.5	93.8	95.1	98.6

Effect of Air Voids on Noise (OGFC)

QUIET PAVEMENT - Europe

Two Layer Porous Asphalt

- 2.5 cm fine grade (top) 2/6 or 4/8 mm aggregate
- 4/5 cm course grade 11/16 mm aggregate (lower layer)
- 8-9 dBA quieter than conventional mixes
- 4 dBA quieter than single layer (high speed)
- Higher cost than single layer mix (25-35 %)

2.5 cm fine grade

4.5 cm coarse grade

Conclusions

OGFC mixes reduce the high frequency noise

The gradation of an OGFC affects the low frequency noise – the coarser the mix the higher the low frequency noise

Based on European testing – thickness may also reduce low frequency noise

Variability on the Road

Typical variability

HMA – Average variability over a one-mile section of roadway – 3.6 dB(A)

PCCP – Average variability over a one-mile section of roadway – 4.4 dB(A)

MOGFC - 2

37

Pavement Under Bridge

Conclusions

- The noise level of a highway is a lot more variable that most folks doing noise testing understand it to be.
- This variability needs to be considered when doing side line measurements
- You can pick low or high noise areas depending on what you want to prove

Effect of Age on Noise

2010

ER 163

Test Track

What Makes a Difference?

Texture

- Maximum aggregate size
- Negative (rolled) surface

Voids

More is better

Thickness

Thicker is better

SR 101W ARFC 11/6/03 91 dB(A)

