The Superpave System –
Filling the gaps.

John A. D'Angelo
Federal Highway Administration

FHWA Binder lab Continuous support to the States: Training / Ruggedness / Development / Validation Trouble shooting of binder problems.

Proposed MP1a Spec.		
Binder	T _a Current Spec	T _a Proposed Spec
70-22 Air Blown	-24.5	-22.5
70-22 Conventional	-25.1	-22.5
70-22 SBS Modified	-26.0	-30.5
Chemically Modified 64-28 A	-29.0	-28.0
Chemically Modified 64-28 B	-27.5	-27.0
Chemically Modified 64-28 K1	-29.5	-27.5
Chemically Mbdified 58-28 Ml	-27.3	-27.0
Elvaloy Modified 64-34 DP	-34.7	-36.0

Key

- Uniform procedures between the two mobile laboratories
 - *AASHTO PP XX-01, "Standard Practice for the Evaluation of Different SGC's used in the Design and the Field Management of Superpave Mixes"
- Routine maintenance and calibration was performed

We are seeing measurable differences in the field.

- ** State DOT expressed concern regarding measured differences in specimens compacted in SGC's between the State and several local Contractors
- Differences as high as 1.5 % air voids!

Findings

- ** Based on the <u>limited</u> testing, the Contractors SGC appears <u>not</u> to be maintaining the <u>internal</u> angle of gyration dynamically.
- ** Also, the DOT's SGC appears to be operating on the <u>high</u> side if the specification.

What Do We Do Now Interim Step – is to use a procedure to compare compactors and determine an offset between them.

Mobile Asphalt Labs

- * Provide "Hands-on" of Superpave System
 - Volumetric Mix Design
 - •Field QC/QA Procedures, NCHRP 9-7
 - *Simple Performance Test Device, NCHRP 9-19
 - Performance Related Specifications 9-22
- 4 to 6 week visits
- Data used to support ETG's

Superpave Specifications

- Roadway Densities
 - *Specifications the same, mixes different.

Superpave Specifications **Roadway Densities. *Lift thickness does effect compaction. *Recommended lifts should be 3 to 4 times nominal maximum size or 2 1/2 to 3 times max size.

90-03 Mix Tenderness

- Study variables
 - *Determine effect of moisture on mix properties.
 - Procedure developed to produce mix with 2% moisture in agg.
 - •Measure moisture in plant mix.
 - Develop procedure to determine actual measure in plant mix.

Superpave Compaction

- Mix Tenderness
 - •Study underway with the Asphalt Institute.
 - Major cause of tenderness is moisture
 - Minor affect gradation

SUPERPAVE PERFORMANCE MODELS

Proposed Changes to the Long-Range Plan for 2005

.

Superpave Performance Models and Test Methods

- 1999 2002: NCHRP Project 9-19, Superpave Support and Performance Models Management
 - Complete all tasks begun in FHWA project.
- 1998 2001: NCHRP Project 1-37A, Development of the 2002 Guide for the Design of New and Rehabilitated Pavement Structures
 - Mechanistic-empirical HMA performance models.

Original 1999 Plan

- Project 9-19: Materials characterization model and test.
- Future Projects: Mechanistic models for nonlinear, viscoelastic HMA behavior based on 3-D finite element analysis and similar advanced computing techniques.
- Realistic completion date: 2007 or 2008.
- Estimated future funding: \$7.65 million.

Revision of the Long-Range Plan for 2005

- *NCHRP Project Panels 9-19 and 1-37A
- ***TRB Superpave Committee**
- **AASHTO Standing Committee on Research

Revised Plan

- Use HMA performance models and integrated climatic model from the 2002 Design Guide (Project 1-37A) for Superpave mix analysis and, possibly, HMA PRS (Project 9-22).
- Realistic completion date: 2004 or 2005.
- Estimated future funding: \$1 -2 million.

Revised Plan

- Superpave effort finished on schedule.
- Common tools for HMA mix design, structural design, and PRS.
- Common materials characterization test; reduced need for new equipment; simplified technician training.
- Next generation of multi-use, mechanistic HMA performance models developed with minimal duplication of effort.

The Superpave System

- Superpave is in place and it does work.
- There is a great deal of work needed to fill gaps in the system.
- Work is continuing to fill the gaps.
- A plan is in place to complete the system by 2005.

