Simple Performance Test

Northeast Asphalt User/Producer Group
Ramon Bonaquist, P.E.
Advanced Asphalt Technologies, LLC
What is it?

- Test conducted on the mixture that indicates how it will perform
- Identify inferior mixes
 - Rutting
 - Cracking
- Design
- QC/QA Operations
Lots of Possibilities

- Gyratory Compactor
 - NCHRP 9-7 Field Procedures and Equipment to Implement SHRP Asphalt Specifications
 - NCHRP 9-16 Relationship Between Superpave Gyratory Compaction Properties and Permanent Deformation of Pavements In-Service
Lots of Possibilities

• Loaded Wheel Testers
 – Transportation Research Circular E-C016
 – NCHRP 9-17 Accelerated Laboratory Rutting Tests: Asphalt Pavement Analyzer

• SHRP Shear Test
 – NCHRP 9-7 Field Procedures and Equipment to Implement SHRP Asphalt Specifications
 – NCHRP 9-18 Field Shear Test of Hot Mix Asphalt
Lots of Possibilities

• Fundamental Tests
 – NCHRP 9-19 Superpave Support and Performance Models Management
 • Stiffness
 • Permanent Deformation
 • Creep
 • Strength
 – PennDOT Evaluation of Triaxial Strength
 • Indirect Tensile Strength
General Conclusion

• Many show promising correlation with pavement performance

• How do you select the best?
 – Fundamental versus Empirical
 – Mixture Design versus Quality Control
 – Specimen Preparation
 • Size
 • Lab compacted versus field sample
 – Equipment and Training Costs
Specific Projects

• NCHRP 9-19 Task C
 – Simple Performance Test Recommendations
 • Dynamic Modulus
 • Repeated Load Permanent Deformation
 • Creep

• NCHRP 9-18 Field Shear Test
 – QC Application

• PennDOT Triaxial Study
 – Indirect Tensile Strength
NCHRP 9-19 Task C

- University of Maryland and Arizona State University
 - Matt Witczak PI
 - Subcontractors
 - Fugro BRE
 - AAT
 - Heritage Research

- Fundamental Test
Candidate Simple Performance Tests

- **(12) Stiffness and Deformation/Strength Related Tests**
 - **Rutting Stiffness**
 - Dynamic (Complex) Modulus - ASU
 - Dynamic (Wave Propogation) Modulus - ASU
 - Predicted Stiffness from Material Properties - ASU
 - SST-G* Complex Modulus - AAT
 - G*-Field Shear Tester - UMD
 - **Rutting Deformability**
 - Triaxial Shear Strength - ASU
 - Repeated Load Permanent Deformation (Triaxial) - ASU
 - Repeated Shear Permanent Deformation - Hertiage
 - Static Creep / Flow Time - ASU
 - **Cracking**
 - Indirect Tensile (Strength, Creep, Fatigue) - ASU
 - Dynamic (Complex) Modulus - ASU

- **Over 80 Test Response Parameters**
Experimental Sites

MnRoad

WesTrack

FHWA-ALF

27-28 July 2000
Panel Meeting
FHWA-ALF

<table>
<thead>
<tr>
<th>ALF Lane</th>
<th>Binder Type</th>
<th>Nominal Size, mm</th>
<th>Asphalt Content, %</th>
<th>Air Void Content, %</th>
<th>Rut Depth, (10,000 Passes) mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>AC-10</td>
<td>19.0</td>
<td>4.80</td>
<td>8.6</td>
<td>39.3</td>
</tr>
<tr>
<td>7</td>
<td>Styrelf</td>
<td>19.0</td>
<td>4.90</td>
<td>11.9</td>
<td>12.0</td>
</tr>
<tr>
<td>8</td>
<td>Novophalt</td>
<td>19.0</td>
<td>4.70</td>
<td>11.9</td>
<td>4.4</td>
</tr>
<tr>
<td>9</td>
<td>AC-5</td>
<td>19.0</td>
<td>4.90</td>
<td>7.7</td>
<td>48.1</td>
</tr>
<tr>
<td>10</td>
<td>AC-20</td>
<td>19.0</td>
<td>4.90</td>
<td>9.3</td>
<td>36.3</td>
</tr>
<tr>
<td>11</td>
<td>AC-5</td>
<td>37.5</td>
<td>4.05</td>
<td>6.0</td>
<td>22.3</td>
</tr>
<tr>
<td>12</td>
<td>AC-20</td>
<td>37.5</td>
<td>4.05</td>
<td>7.4</td>
<td>15.2</td>
</tr>
</tbody>
</table>
MnRoad

<table>
<thead>
<tr>
<th>MNROAD CELL</th>
<th>BINDER TYPE</th>
<th>NOMINAL SIZE, MM</th>
<th>ASPHALT CONTENT, %</th>
<th>AIR VOID CONTENT, %</th>
<th>RUT DEPTH, (NOV 98)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>AC-20</td>
<td>12.5</td>
<td>5.08</td>
<td>8.2</td>
<td>0.175</td>
</tr>
<tr>
<td>17</td>
<td>AC-20</td>
<td>12.5</td>
<td>5.45</td>
<td>7.7</td>
<td>0.205</td>
</tr>
<tr>
<td>18</td>
<td>AC-20</td>
<td>12.5</td>
<td>5.83</td>
<td>5.6</td>
<td>0.195</td>
</tr>
<tr>
<td>20</td>
<td>120/150Pen</td>
<td>12.5</td>
<td>6.06</td>
<td>6.3</td>
<td>0.67</td>
</tr>
<tr>
<td>22</td>
<td>120/150Pen</td>
<td>12.5</td>
<td>5.35</td>
<td>6.5</td>
<td>0.28</td>
</tr>
<tr>
<td>WesTrack Section</td>
<td>Binder Type</td>
<td>Nominal Size, mm</td>
<td>Asphalt Content, %</td>
<td>Air Void Content, %</td>
<td>Rut Depth, (1.5M ESAL) mm</td>
</tr>
<tr>
<td>------------------</td>
<td>-------------</td>
<td>------------------</td>
<td>--------------------</td>
<td>---------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>2</td>
<td>PG 64-22</td>
<td>12.5 Fine</td>
<td>5.02</td>
<td>10.4</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>PG 64-22</td>
<td>12.5 Fine</td>
<td>5.24</td>
<td>6.6</td>
<td>7</td>
</tr>
<tr>
<td>15</td>
<td>PG 64-22</td>
<td>12.5 Fine</td>
<td>5.55</td>
<td>8.7</td>
<td>8</td>
</tr>
<tr>
<td>7</td>
<td>PG 64-22</td>
<td>12.5 Coarse</td>
<td>6.28</td>
<td>6.9</td>
<td>36</td>
</tr>
<tr>
<td>23</td>
<td>PG 64-22</td>
<td>12.5 Coarse</td>
<td>5.78</td>
<td>4.9</td>
<td>13</td>
</tr>
<tr>
<td>24</td>
<td>PG 64-22</td>
<td>12.5 Coarse</td>
<td>5.91</td>
<td>7.2</td>
<td>22</td>
</tr>
</tbody>
</table>
Compare Actual Performance to Measured Laboratory Response

![Graph showing the relationship between Test Parameter and Distress]
Subjective Classification

<table>
<thead>
<tr>
<th>Color</th>
<th>CRITERIA</th>
<th>R^2</th>
<th>Se/Sy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excellent</td>
<td>> 0.90</td>
<td>< 0.350</td>
<td></td>
</tr>
<tr>
<td>Good</td>
<td>0.70 - 0.89</td>
<td>0.36 - 0.55</td>
<td></td>
</tr>
<tr>
<td>Fair</td>
<td>0.40 - 0.69</td>
<td>0.56 - 0.75</td>
<td></td>
</tr>
<tr>
<td>Poor</td>
<td>0.20 - 0.39</td>
<td>0.76 - 0.90</td>
<td></td>
</tr>
<tr>
<td>Very Poor</td>
<td>< 0.19</td>
<td>> 0.90</td>
<td></td>
</tr>
</tbody>
</table>
Findings - Rutting

<table>
<thead>
<tr>
<th>Test</th>
<th>Mode</th>
<th>R^2</th>
<th>Se/Sy</th>
<th>Rating</th>
<th>Selected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulus</td>
<td>Traixial</td>
<td>0.91</td>
<td>0.31</td>
<td>Excellent</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>Shear</td>
<td>0.79</td>
<td>0.52</td>
<td>Good</td>
<td></td>
</tr>
<tr>
<td>Repeated Load</td>
<td>Triaxial</td>
<td>0.90</td>
<td>0.36</td>
<td>Good</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>Shear</td>
<td>0.88</td>
<td>0.39</td>
<td>Good</td>
<td></td>
</tr>
<tr>
<td>Creep</td>
<td>Triaxial</td>
<td>0.91</td>
<td>0.32</td>
<td>Excellent</td>
<td>x</td>
</tr>
</tbody>
</table>
Clear Advantages

- Triaxial Modulus
 - Clear tie to 2002 Design Guide
 - Rational Limiting Stiffnesses
 - Indicator of Fatigue Cracking
 - Optimization

- Triaxial Creep
 - Simplicity of Testing Equipment

- Triaxial Repeated Load
 - Best represents actual loading
Disadvantage

- Specimen Size
 - 100 mm Diameter by 150 mm High
 - Parallel Ends
- Needed to Ensure Fundamental Properties
- Sawed and Cored From Oversized Gyratory Specimens
E* -- Triaxial Complex Modulus Testing

\[|E*| = \frac{\sigma_0}{\varepsilon_0} \]

3 to 200 psi

0, 20, 30 psi

27-28 July 2000

Panel Meeting
ALF: Rut Depth vs. $E^{\text{max}}/\sin\phi$ @ 130 °F (54.4 °C)

Unconfined -- Linear Range

Rut Depth @ 10,000 Passes (mm)

$E^{\text{max}}/\sin\phi$ (10^6 psi)

Se/Sy = 0.35

$R^2 = 0.90$

Legend:
- 5 - AC-10
- 7 - Styrelf
- 8 - Novophalt
- 9 - AC-5
- 10 - AC-20
- 11 - Base AC-5
- 12 - Base AC-20
Creep - Flow Time Test

![Graph showing Creep - Flow Time Test]

- **D(t)**
- Time
- High
- Low
- Flow Time
MnR: Unconfined Static Creep Test - Flow Time @ 130 °F (54.4 °C)

Se/Sy = 0.155

R² = 0.98

Rut Depth Nov 98 (in)

Flow Time, sec

16 - AC-20
17 - AC-20
18 - AC-20
20 - 120/150 PEN
22 - 120/150 PEN
Repeated Load Permanent Deformation Test

Loading Cycles

Permanent Strain (in/in)

100 N 1000 N

FN (Flow Number)
ALF: Unconfined Repeated Load Test - Flow Number @ 130 °F (54.4 °C) (20 psi)

Se/Sy = 0.435
R²=0.84

Rut Depth @ 10,000 Passes (mm)

Flow Number of Repetitions

5 - AC-10
7 - Styrelf
8 - Novophalt
9 - AC-5
10 - AC-20
11 - Base AC-5
12 - Base AC-20
Further Work

• Field Verification
 – Underway as part of NCHRP 9-19
 – Establish and Validate Acceptance Limits
 – Introduce Equipment to Users

• First Article Equipment
 – New NCHRP Study NCHRP 9-29
 – Procure and Evaluate Two First Articles
NCHRP 9-18 Field Shear Test

• Penn State
 – Don Christensen PI
 – AAT
 – EnduraTec Systems