SUPERPAVE Construction – Lessons Learned

LESSON #1

- Lesson #1
- What is this Stuff?
Lesson #1 – What is This Stuff?

- Marshall or Hveem Method for 50 years
- Comfort Zone
- Agencies developed their own mixes
 - Alphanumeric Code – AABC, Base 1, Base 2, BC, BF, BI, FABC, F-1, HDB, HDS, I-1, I-2, I-5, ID-2, ID-3, J-1, P-401, SC, SF, ST, Type 1, Type 1B, Type 1C, Wearing 1, Wearing 2
- Secret Code?
Lesson #1 – What is This Stuff?

- Marshall or Hveem Method for 50 years
- Pendulum went from fine to coarse
- After 50 years of tinkering, these mixes did not always perform well, especially in high stress areas
- Change Was Necessary
Lesson #1 – What is This Stuff?

- New Mix Names – no more secret codes
- Metric System
- Nominal Maximum Size Instead of Maximum Aggregate Size
- Typically Coarser than the Mixes of the Past
 - Potential for more production & laydown problems

19 mm SUPERPAVE Mix
Lesson #1 – What is This Stuff?

- New Asphalts – Performance Grade
 - New Secret Code to Learn
 - PG XX-XX
 - No More AC-20?
 - New to Both Suppliers and Contractors
- Is it Modified?
 - Handling
 - Temperatures
SUPERPAVE Construction – Lessons Learned

LESSON #2

- Lesson #2
- Training – Leave No One Behind
Lesson #2 – Leave No One Behind

- Information Transferred from Researchers to Material Engineers and Technicians
 - DOTs
 - Contractors
- Laydown Crews Learned by Trial & Error
- Pavement Designers – No Training?
 - Select Mix
 - Select PG Binder
 - Select Thickness
SUPERPAVE Construction – Lessons Learned

Lesson #3

SUPERPAVE is Not Forgiving
Lesson #3 – SUPERPAVE is Not Forgiving

- SUPERPAVE Mix Designs are sensitive to material changes caused by the HMA plant
 - Material Breakdown
 - Change in Aggregate Surface Texture
- Allow for Material Breakdown
- Verify the Mix Prior to Starting the Project
Lesson #3 – SUPERPAVE is Not Forgiving

- Consistent, Quality Aggregate Supply
- Proper Stockpiling and Material Handling
- Good Plant Operations
 - Calibration
 - Dust Return System
 - Maintenance
Lesson #3 – SUPERPAVE is Not Forgiving

- Comfort Zone with Fine Marshall Mixes
- Sloppy Laydown Practices Yield Lousy Results with Coarse SUPERPAVE Mixes
 - Poor Equipment
 - Poor Techniques
 - Lack of Training
 - Poor Attitude
 - Laziness
Lesson #4

How Many Bins, Tanks and Silos?
SUPERPAVE Mixes are More Sensitive to Gradation Changes - Require Tighter Control

- More Cold Feed Bins Required
- Marshall - 3 or 4 bins
- SUPERPAVE - minimum 6
Lesson #4 – How Many Bins, Tanks and Silos?

- Not Just AC-20 Anymore – Multiple Asphalt Tanks Required
 - Standard Grade – PG 64-22
 - Bump Grade – PG 70-22
 - PMA – PG 76-22
 - Recycle Mixes – PG 58-28?
Lesson #4 – How Many Bins, Tanks and Silos?

- Storage Silos – limits number of mixes
- Four Mixes - 9.5mm, 12.5mm, 19mm, 25mm
- Four ESAL levels - four asphalt contents
- PG Binders - PG 64-22, PG 70-22
- 32 Mix Designs - 3 Silos
- Try to limit number of mixes per project
SUPERPAVE Construction – Lessons Learned

Lesson #5

Back to Basics
Lesson #5 – Back to Basics

- Production & Laydown “Best Practices”
 - Developed While Using Marshall & Hveem Mixes
 - Also Worked With SUPERPAVE
 - MUST be used to Place SUPERPAVE Successfully
LESSON #6

- Lesson #6
- Don’t Stop!
Lesson #6 – Don’t Stop!

- Consistent, Non-Stop Movement of HMA Material and the Paver is the Goal
 - Mat Texture
 - Prevent Segregation
 - Smoothness
Lesson #6 – Don’t Stop!

- **Match Paver Speed to Delivery Rate of HMA to the Job**
 - 250 tph delivery - 12’ lane, 2.00” lift
 - $250 \text{ tph} \times 9 \text{ sy/ton} = 2250 \text{ sy/hr}$
 - $2250 \text{ sf/hr} \times 9 \text{ sf/sy} = 20,250 \text{ sf/hr}$
 - $20,250 \text{ sf/hr} / 12’ \text{ width} = 1688 \text{ ft/hr}$
 - $1688 \text{ ft/hr} / 60 \text{ min/hr} = 28 \text{ ft/min}$
 - 400 tph requires 45 ft/min
Lesson #6 – Don’t Stop!

- Plan for Easy, Quick Entry and Exit from Paver for Delivery Trucks
- Train Truck Drivers in Proper Procedures
 - Trucks Lined Up in Front of Paver With Beds Raised
 - Paver Bumps Truck
 - No Cleanout in Front of Paver
 - Designate a location on the project site
- Traffic Control
LESSON #7

- No Jail Breaks!
Lesson #7 – No Jail Breaks!

- Keep HMA Confined in a Mass From the Plant to the Pavement
- Larger Aggregate Particles Will “Break & Run” At Any Time Prior to Passing Under The Screed If You Allow It – SEGREGATION
Lesson #7 – No Jail Breaks!

- Segregation in HMA Plant
- No Obstructions in Drum
- Drag Conveyor Operation
- Storage - Batcher and Silo Gates
Lesson #7 – No Jail Breaks!

- **Truck Loading Procedure**
 - Prevent “Break & Run” From Silo Into Truck Bed
 - **3 Drops**
 - Use Tailgate, Front of Dump Body, and First Two Drops as Confinement
Lesson #7 – No Jail Breaks!

- Truck Unloading Procedure
 - Raise Dump Bed & Place Mix Against Tailgate Before Opening It
 - Dump HMA into Paver as a Mass
 - Don’t Dribble – Prevent “Break & Run” From Truck into Paver
- Train Truck Drivers in Proper Procedures
Lesson #7 – No Jail Breaks!

- Paver Hopper Operation
 - Keep Hopper Deck Covered With HMA At All Times
 - Hopper Wings Dumped Only Into Half-Full Hopper Deck
- Prevent End-of-Load Segregation
Lesson #7 – No Jail Breaks!

- **Paver Feeder Operation**
 - Prevent “Break & Run” of Coarse Aggregate Under Feeder Gear Box
 - Diverter Plates
 - Reverse Augers
Lesson #7 – No Jail Breaks!

- Paver Feeder Operation
- Flow Gates Set for Consistent Feeder Operation
- Maintain Constant Head of Material
Lesson #7 – No Jail Breaks!

- Paver Feeder Operation
- Move Mix as a Confined Mass to End Gate
 - Auger Extensions
 - Auger Tunnel Extensions
Lesson #7 – No Jail Breaks!

- **Material Transfer Vehicle**
 - Reduces Truck-Dumping Issues
 - Remixing Reduces Silo And Truck-Loading Segregation
 - If Paver Hopper Insert Is Kept Full – Reduces Segregation Caused By Hopper Operation
 - Does NOT Correct Poor Practices Behind the Hopper
LESSON #8

It’s Not Easy to Be Dense
Lesson #8 - It’s Not Easy to be Dense

- Coarse-Graded SUPERPAVE Mixes Typically Harder to Compact than Marshall Mixes
- Major Adjustment for Agencies and Contractors Using Poor Marshall Density Specifications
 - 10% - 12% in-place air voids typical
 - Worked for fine-graded Marshall mixes
 - Permeability problems for SP mixes
Lesson #8 - It’s Not Easy to be Dense

- Factors Affecting Compaction
 - Lift Thickness (Design)
 - Mix Temperature (Contractor)
 - Compactive Effort (Contractor)
 - Strength of Underlying Material (Design)
 - Cannot achieve density when paving over structurally unsound material
 - Weak Subgrade
 - Roadway Shoulders
Compaction of Superpave Mixes

<table>
<thead>
<tr>
<th>Approximate Density Measurement</th>
<th>91% - 92% of M.T.D.</th>
<th>92% of M.T.D.</th>
<th>94% - 97% of M.T.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature Zones</td>
<td>320° - 240°</td>
<td>240° - 170°</td>
<td>170° - 150°</td>
</tr>
<tr>
<td>Distance</td>
<td>200 feet</td>
<td>200 feet</td>
<td>150 feet</td>
</tr>
</tbody>
</table>

TENDER ZONE
Lesson #8 - It’s Not Easy to be Dense

- **All SUPERPAVE Coarse Mixes DO NOT HAVE A Tender Zone!!!**
- Tender Mix VS. Tender Zone
- Only 1/3 of SUPERPAVE coarse mixes have shown a Tender Zone
- Build a Test Strip
Lesson #8 - It’s Not Easy to be Dense

- Use Enough Rollers to Achieve Density
 - Three or Four?
 - Width
 - High Frequency
 - Rubber tired?
- Keep Front Roller Close to Paver - *If Mix Temperature is Appropriate*
- Use an Infrared Temperature Gun
SUPERPAVE Construction – Lessons Learned

Lesson #9

Good Equipment is a Must!
Lesson #9 – Good Equipment is a Must!

- HMA Plant Must be in Good Condition and Calibrated to Produce Quality SUPERPAVE Mixes Consistently
- Calibrate Quarterly
 - Truck Scales
 - Belt Scales
 - Asphalt Pump Meter
 - Thermocouples
Lesson #9 – Good Equipment is a Must!

- Paver in Poor Condition Cannot Place a Quality Pavement
- A Paver in Perfect Mechanical Condition May Still Place a Lousy HMA Pavement
 - Paver Adjustments
 - Feeder Gates
 - Feeder Controls
 - Head of Material
 - Feeder Speed
 - Screed & Extensions
 - Electronic Grade Control
Lesson #9 – Good Equipment is a Must!

- Compaction Equipment Must be in Good Condition and Well-Maintained
 - Engine RPM
 - Hydrostatic System
 - Smooth travel movement
 - Vibratory system
 - Drums
 - Smooth
 - Round
 - Water Spray
Lesson #10

Quality Starts at The Top
Lesson #10 – Quality Starts at the Top

- Commitment to Quality Must Start With Upper Level Management
- Management Must Clearly Communicate Expectation of Quality to All Employees
Lesson #10 – Quality Starts at the Top

- Management Must Provide Necessary Resources to Perform Quality Work
 - People
 - Motivated
 - Celebrate Success
 - Training
 - Equipment
 - Materials
SUPERPAVE Construction – Lessons Learned (Summary)

- 1) What is This Stuff?
- 2) Training – Leave No One Behind
- 3) SUPERPAVE is Not Forgiving
- 4) How Many Bins, Tanks and Silos?
- 5) Back to Basics
- 6) Don’t Stop!
- 7) No Jail Breaks!
- 8) It’s Not Easy to Be Dense
- 9) Good Equipment is a Must
- 10) Quality Starts at the Top
SUPERPAVE Construction – Lessons Learned (Summary)

- Pressures to Meet Production Targets Should Not Make Us Forget or Set Aside the Lessons Learned