NECEPT

Northeast Center of Excellence for Pavement Technology

Certified Asphalt Field Technician Update/Refresher Course

NECEPT

Website: <u>www.superpave.psu.edu</u> Email: <u>superpave@psu.edu</u>

Covers PENNDOT Certification Program Click on Training to Access Course Information: Courses, Registration, Schedule & Agenda, Pub 351, FAQ

PennState College of Engineering

Program Assistant (814-863-1293)

NORTHEAST CENTER OF EXCELLENCE

Housekeeping

- 1. Work Experience Requirements
- 2. Attendance and Participation
- 3. Breaks during the Course
- 4. Quiz at the end of each Module
- 5. Course Material
- 6. Videos
- 7. Course Objective
- 8. Course Agenda

1. Work Experience Requirements for Certification Renewal (See Pub 351)

- **Minimum of** 500 hours of documented experience in asphalt mixture paving or paving inspection since date of last certification.
- Type of Experience:
 - asphalt mixture paving
 - QC or QA inspection experience
 - Surface preparation before asphalt mixture paving
 - asphalt mixture paving, compaction, ride quality measurement
 - analysis, longitudinal joint density measurement or analysis

• Source of Experience:

- *PennDOT ECMS, and maintenance,*
- HOP, EMA projects, PTC construction or maintenance projects,
- Pennsylvania municipal government projects which used PennDOT Liquid Fuels Funds,
- or from projects in other State DOTs participating in MARTCP."

2. Attendance and Participation

- Attendance in the course through Zoom is <u>required.</u>
- Zoom records must show at least <u>90%</u> attendance.
- Participants' Videos will be off.
- Participants' microphones will be off.
- Keep your speakers ON during the course.
- Questions can be asked through Zoom.

2. Attendance and Participation

How to use Q/A and Chat Buttons on Zoom Webinar:

Remember these two rules:

1. <u>Do you want to ask questions?</u> <u>Then USE Q/A</u>

2. <u>Do you want to answer the instructor's questions?</u> <u>Then USE CHAT</u>

3. Breaks during the Course

• Breaks: Short Breaks (5 to 10 minutes)

• Breaks at the End of each Module (after quiz)

4. Quiz at the end of each module

- Short Quiz Self Graded
- 5 to 10 Questions
- 3 to 6 minutes
- **REQUIRED** for Online Course Only:
 - Must answer **<u>85</u>** percent of questions
 - -Not graded for correct or wrong answers

NOTE: At the end of the module, take the quiz first before taking a break. The quiz time is limited and will not be reopened.

5. Course Material

Course Material:

is available online at the NECEPT Website (superpave.psu.edu)

Go to Training/Asphalt/Asphalt Field Link below:

https://www.superpave.psu.edu/Training/Asphalt/Asphalt-Field.aspx

6. Videos

- There are four videos for this course:
 - Longitudinal Joint Construction (12.5 min.)
 - Surface Preparation (13 min.)
 - LTS Testing (21 min.)
 - Asphalt Laydown (13 min.)

We will show the first three during the relevant modules but those having trouble viewing through ZoomTM, could directly watch at the links provided.

7. Course Objectives

- This is an *update/refresher* course for renewal of certification as an Asphalt Field Technician. This course provides credit toward renewal of certification for participants.
- The course objectives are
 - To provide an *update* of essential PennDOT Specifications and PTMs
 - To provide a *review* of operations and procedures for asphalt paving
 - To present the latest hot topics and issues related to asphalt materials and paving

8. Course Agenda

- Module 1 Field Technician Responsibilities
- Module 2 Update on PennDOT Specifications (Parts 1 and 2)
- Module 3 LTS Testing (Video)
- Module 4 Paving Best Practices
- Module 5 Review of PTMs
- Module 6- Lots & Sublots Layout and Sample Locations
- Module 7– Review of Superpave & JMF Nomenclature
- Problem Solving
- Open Discussion, Questions, Areas of Concern

ACRONYMS

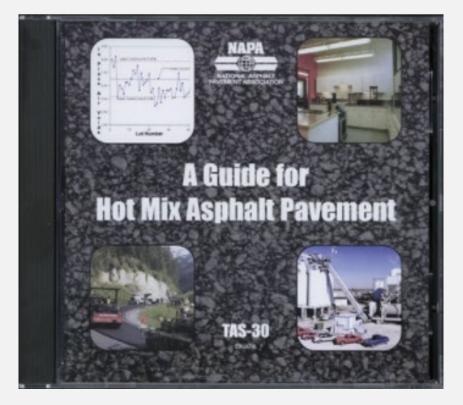
• Make sure you get familiar with these terms as many of them are frequently used in everyday practice of production and construction of asphalt mixes.

Ţ

ACRONYMS

AASHTO	HMA	NMAS	RAM
ACE	IRI	OSHA	RAP
AET	JMF	PAPA	RAS
AI	LTS	PG	SRL
ATPBC	MTV	PTM	SMA
ASTM	MUTCD	QC/QA	TAC
ESAL	NAPA	RPS	VMA
FHWA	NECEPT	PWT	WMA

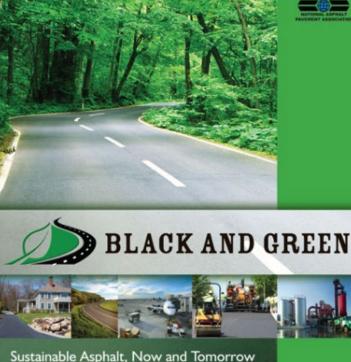
- Hot-Mix Asphalt Paving Handbook
 2000 (July 2001) PDF only
- Available from NAPA* Online Store
 - List Price: \$12
 - 231 Pages
 - 65 MB


F

	US Army Corps of Engineers AC 150/5370-14A Appendix 1	
	Ho Asj Pa	t-Mix phalt iving
	Fede National As U America	and Transportation Officials ral Aviation Administration ral Highway Administration phalt Pavement Association S. Army Corps of Engineers an Public Works Association ciation of County Engineers
H	ANDBO	OK

https://member.asphaltpavement.org/Shop/Product-Catalog?productname=hotmix%20asphalt%20paving&category=

- A Guide for Hot Mix Asphalt Pavement
- CD-ROM
- Available from NAPA* \$32



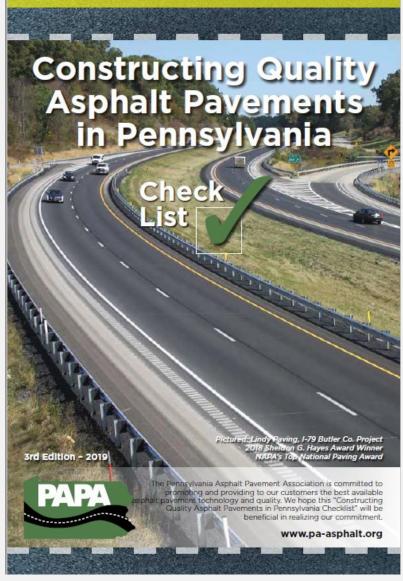
 https://member.asphaltpavement.org/Shop/Product-Catalog?productname=a%20guide%20for%20hot%20mix%20asphalt%20pavement&category=

- Black and Green: Sustainable Asphalt (September 2009) – PDF (also in hard copy)
- Available from NAPA* Online Store
 - List Price: \$10 (PDF)
 - Gov't/Ed: \$7.50
 - Members: Free


https://member.asphaltpavement.org/Shop/Product-Catalog/Product-Details?productid={53C81D4C-2307-EA11-A812-000D3A4DBC41}

- Warm-Mix Asphalt: Best Practices (January 2012) – PDF (also in hard copy)
- Available from NAPA* Online Store
 - List Price: \$45.00 (PDF)
 - Gov't/Ed: \$33.75
 - Members: Free

https://member.asphaltpavement.org/Shop/Product-Catalog/Product-Details?productid={79A571B7-7701-EA11-A811-000D3A4DBF2F}



Ę

Excellent Resource

Pennsylvania Asphalt Pavement Association

Constructing Quality Hot-Mix Pavements in Pennsylvania Checklist

http://www.pa-asphalt.org/

Review of Field Technician's Responsibilities

Technician Certification Program

- PennDOT Pub 351
 - 23 CFR
 - -Background Info
 - Certification & Recertification Requirements
 - Application Procedures
 - -Exam Review & Retest
 - -Code of Ethics

BITUMINOUS OR ASPHALT TECHNICIAN CERTIFICATION PROGRAM

BITUMINOUS OR ASPHALT PLANT AND FIELD TECHNICIANS

Initial Certification Requirements Certification Renewal Requirements Registration Procedures Performance Review and Code of Ethics Course Administration

PUB 351 (11-18)

Asphalt <u>Technician in Training</u> Requirements as in Pub 351

- Field Supervisor will need to sign off on experience (24 hours of Experience)
- ACE will need to sign off on capabilities.
- Must take Review and Certification Course in next Cycle (and Get Passing Grade)

Certification Renewal

Pub 351: Section IX

- Must be Certified for previous 5 years
- Must have 500 documented hours experience on State Asphalt Paving projects
- Must have PennDOT or PTC signature to confirm satisfactory performance
- Within the 5 years, must have attended :
 - Two NECEPT Field Technician Update/Refresher Courses, or....
 - One NECEPT Update/Refresher Course and any other acceptable asphalt-related conference, seminar, or workshop summed to at least SIX hours

Certification Renewal

Examples of Acceptable Asphalt-Related Annual Conference Seminars, or Workshops

- Annual APC Conferences
- Annual PAPA Conferences
- Mid-Atlantic States Quality Assurance Workshop
- Nationally recognized conferences or courses
- PennDOT pre-approved Department or Industry sponsored training

Apply for Certification Renewal Card Online Submit Recertification & Application online & Processing Fee (\$35.00)

Asphalt Recertification for Field Technicians

Please refer to PennDOT Publication 351 prior to registration to verify that you meet all of the recertification requirements.

The following items MUST be included in your online application.

- 1. Experience: 500 hours of asphalt mixture paving experience within the past five years.
- 2. Your first Learning Activity: One NECEPT field update refresher within the past five years.
- 3. Your second Learning Activity: One of the following learning activities containing at least six hours of asphalt-related content within the past five years.
 - A. A second NECEPT field update refresher (taken in a different year than the first update refresher)
 - B. An approved learning activity listed in Pub 351

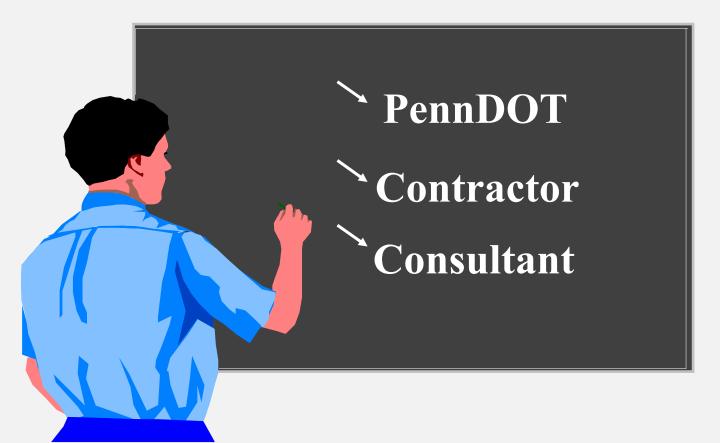
C. A pre-approved learning activity not specifically listed in Pub 351. Please submit an agenda for review and pre-approval IF it does not appear on the Evaluated 2nd Learning Activities.

An electronic approval signature from an authorized PennDOT or PTC representative is required for your certification renewal. Please select the representative that will best know your work experience and history.

Carefully select the month and year that your current card expires to ensure that your card is issued with the correct dates.

Only one course number can be selected in each order. Multiple people can be registered for the same course.

Quantity MUST equal the number of people registering in this order.


	Quantity		Course Description	Cost
0		(202262) Asphalt Field Technician		\$35.00
		Renewal for December 2022		
		Course Date(s):	www.superpave.psu.edu	20047
		December 2022		2

Section XIII: Code of Ethics

Four Principles:

- a. Demonstrate a concern for the welfare and dignity of the recipients of the services, including Department personnel.
- **b.** Maintain high standards of professional competence.
- c. Provide accurate information about asphalt technician services.
- d. Function with discretion and integrity in relations with colleagues and other professionals.

As a certified Technician, you may represent one of the following:

In any case, your responsibility is to ensure a quality product is being placed.

What are your responsibilities ?

- 1. Know the specifications
- 2. Know the PTMs needed to ensure quality control
- 3. Be familiar with paving operations
- 4. Recognize mix and paving deficiencies
- 5. Be able to recommend corrective action
- 6. Adhere to the four principals of the code of ethics

Responsibilities: Pre-Pave Set Up

- Review Job Mix Formula
- Review Project Quality Control Plan & Special Provisions
- Ensure proper preparation of the Nuclear Gauge or Electrical Impedance Gauge
- Check Compaction Equipment
- Set Up Initial Rolling Pattern
- Check Box Sample and/or Core Locations

Responsibilities: Start of Paving Operation

- Check surface preparation
- Check Mix Temperature
- Record Initial Density Readings
- Check Mat Appearance
- Check Joints
- Make Adjustments as Required
- Record Initial Roller Pattern/ Temps

Responsibilities: Paving Operation

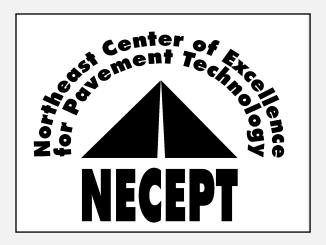
- Monitor Startup Operations
- Monitor Truck Exchange
- Monitor Compaction
- Check with Plant
- Check Finished Product
- Specify Coring Locations for Acceptance
- Maintain Good Communications.

Experience

• Experience allows you to recognize a mistake when you make it again.

• Keep records of mix tendencies as to temperature, amplitude, vibration, cross-slope and grade as related to density and ride.

Your Effort Towards Achieving A Quality Paving Job Makes The Difference Between A Great Job And A Mediocre One.


MAKE THE EFFORT!

Asphalt Construction Program Certified Asphalt Field Technician

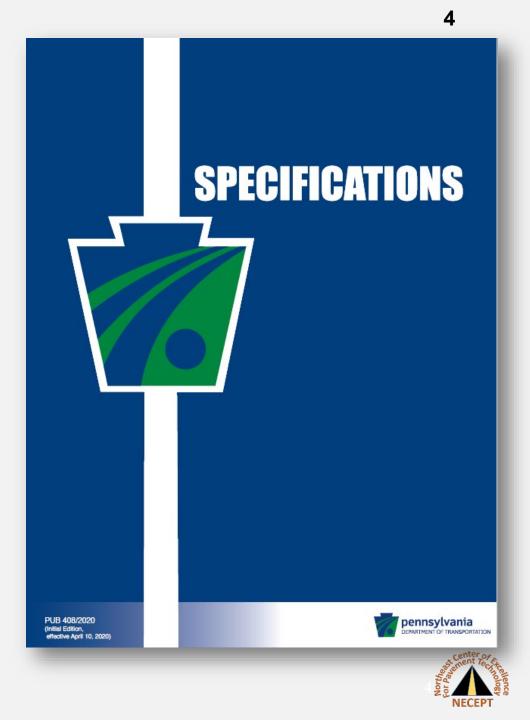
An Update on PennDOT Specifications (Part 1)

PennDOT Specifications Which Specifications Are Most Significant?

The specifications that cover your project and affect YOU are the most important. Be aware of the effective change dates and your project let date.

What you need to know...

- PennDOT Specifications Publication 408:
- Sections covering Asphalt & the important aspects of these specifications
- PennDOT website:
 www.penndot.gov/


PennDOT Specifications (**Publication 408**)

Pub 408/2020: Change No. 7

(Effective October 6, 2023)

Go to: https://www.dot.state.pa.us/public/PubsForms/Publicat ions/Pub_408/PUB%20408.pdf

> Then, click on 2020 Version Then, click on Change No. 7

PennDOT Specifications (Publication 408)

Version	Effective Date		
Initial Edition	April 10, 2020		
Change No. 1	October 2, 2020		
Change No. 2	April 9, 2021		
Change No. 3	October 8, 2021		
Change No. 4	April 1, 2022		
Change No. 5	October 7, 2022		
Change No. 6	April 14, 2023		
Change No. 7	October 6, 2023		

F

2020

Relevant Sections <u>Added</u> in Pub 408 Since April 2018:

Date	Section	Description	
April 2018	412	6.3-mm Thin Asphalt Overlay	
April 2020	313	Plant Produced Asphalt Mixes (base course) – Merging 309 and 311	
April 2020	413	Plant Produced Asphalt Mixes (wearing and binder courses) – Merging 409 and 411	
April 2022	314	Rich Base Courses	

F

Relevant Sections <u>Removed</u> from Pub 408 within the Last 5 Years:

Ę

Date	Section	Description	
April 2020	309	SP Asphalt Mixtures, HMA Base Course – Merged into 313.	
April 2020	311	SP Asphalt Mixture, Warm Base Course – Merged into 313.	
April 2020	320	Aggregate-Bituminous Base Course.	
April 2020	409	SP Asphalt Mixtures, HMA wearing and binder courses – Merged into 413.	
April 2020	411	SP Asphalt Mixtures, WMA wearing and binder courses – Merged into 413.	

7

Major Asphalt Related <u>Changes</u> in Pub 408 Since April 2018

Date	Section	Description	
October 2018	483	Emulsion class changed from CSS-1hPM to CQS- 1hPM.	
April 2019	413	Acceptance by Certification can be used for parking lots	
April 2019	413	Change to Weather & Seasonal Limitations	
October 2021	341 & 342	Allow foamed asphalt in cold recycling in addition to emulsified asphalt	
October 2021	413	Once sublot size established, the sublot size will remain unchanged throughout the project	
October 2022	413	Increase VMA by 0.5% in Table B	

Major Asphalt Related <u>Changes</u> in 408 Since April 2018 (Continued)

9

Ţ

Date	Section	Description	
October 2019	409 (Now 413)	Minimum compacted depth changed from 1 ¹ / ₂ " to 2" for 12.5- mm mix (to obtain cores for measuring and accepting density for standard specification)	
October 2019	409 (Now 413)	Change of material for painting existing vertical surfaces	
October 2020	405	405 Removing reference to "Correction Action" related to Longitudinal Joint Density	
April 2021	419	Allow use of HOLA with SMA Mixtures	
October 2021	413	Clarification on Form TR-447 for entering Gmm for the Joint core.	
October 2021	341 and 342	Use of Foamed Asphalt in addition to Emulsion in Cold Mixes	
October 2021	413	Fixing sublot size once established	

Major Asphalt Related <u>Changes</u> Since April 2018 (PennDOT Bulletin 27 and SSPs)

10

Effective Date	Publication #	Comments	
1/21/2022	Bulletin 27	Minimum Effective Asphalt & Performance Related Testing	
4/10/2020	SSP c0413	Superpave Asphalt Mixture Design, Binder Course (Leveling), High RAP	
5/19/2020	SSP b04131	Superpave Mixture Design, Standard and RPS Construction of Plant Mixed Asphalt Courses With Percent within Limits and Hands-On Local Acceptance (HOLA)	

Major Asphalt Related <u>Changes</u> Since April 2018 (Project Office & Design Manuals)

11

Effective Date	Publication #	Comments	
12/21/2020	2 (POM)	Report delivered material using Electronic Ticketing System	
4/1/2021	2 (POM)	Check temperature from truck bed holes	
October 2019	13M (Design Manual)	Safety Edge	
October 2020	72M: RC- 25M	Safety Edge Drawings	
4/1/2022	2 (POM)	% Payement for Defective Asphalt Pavement	

Pub 408 Table of Contents

Section	Title
100	General Provisions
200	Earthwork
300	Base Courses
400	Flexible Pavements
500	Rigid Pavements
600	Incidental Construction
700	Material
800	Roadside Development
900	Traffic Accommodation & Control
1000	Structures
1100	Manufactured Material
1200	Intelligent Transportation System (ITS) Devices

Pub 408 Asphalt Related Specifications

106	Control of Material
313	Superpave Asphalt Mixture Design, Standard Construction, Base Course
314	Asphalt Rich Base Course (ARBC)
316	Flexible Base Replacement
344	Full Depth Reclamation
341	Cold Recycled Asphalt Base Course (In-Pace)
342	Cold Recycled Asphalt Base Course (Central Plant)
360	Asphalt Treated Permeable Base Course
404	Evaluation of Asphalt Pavement Ride Quality and Payment of Incentive
405	Evaluation of Asphalt Pavement Longitudinal Joint Density And Payment of Incentive/Disincentive

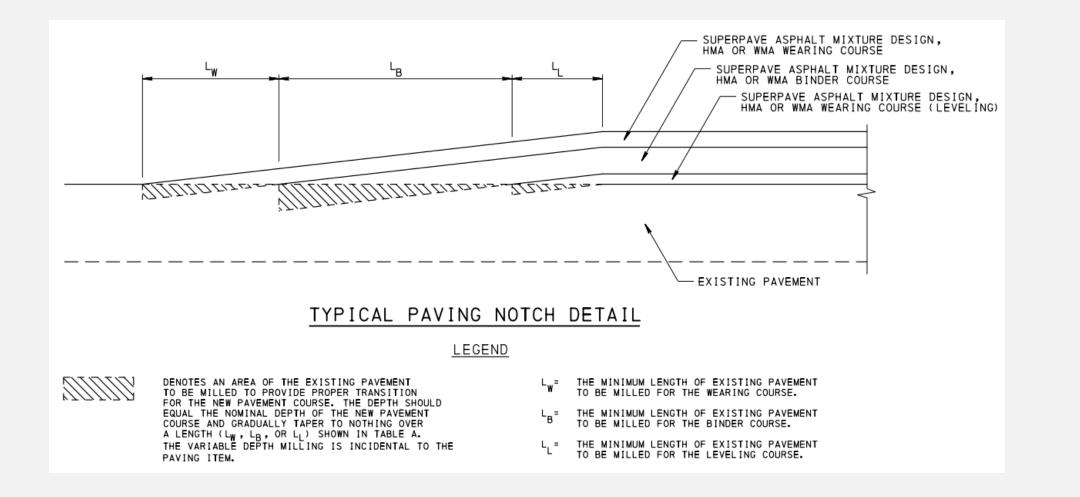
Pub 408 Asphalt Related Specifications

410	Superpave Mixture Design, Standard & RPS Construction of Plant- Mixed Fine-Graded Courses
412	Superpave Mixture Design, Construction of Plant-Mixed 6.3 mm Thin Asphalt Overlay Courses
413	Superpave Mixture Design, Standard & RPS Construction of Plant- Mixed Courses with PWL and LTS Testing
419	Stone Matrix Asphalt Mixture Design, RPS Construction of Plant- Mixed Wearing Courses
420	Pervious Asphalt Pavement System
460	Asphalt Tack Coat
483	Polymer-Modified Emulsified Asphalt Paving System (Microsurfacing)
489	Ultra-Thin Bonded Wearing Course
491	Milling of Asphalt Pavement Surface
496	Asphalt Concrete Pavement, 60-Month Warranty

Other Related Pub 408 Specifications

F

210	Subgrade
350	Subbase
450	Manual Asphalt Patching
461	Asphalt Prime Coat
469	Asphalt Joint & Crack Sealing
491	Milling of Asphalt Paving Surface
492	Profile Milling of Asphalt Paving Surfaces


Remember

• 408 specs are superseded by Supplemental Specifications which are superseded by special provisions.

 Standard Drawings (RC standards) are superseded by Construction Plans and Cross Sections.

Overlay Transitions and Paving Notches RC 28M (From PennDOT Pub 72M)

Overlay Transitions and Paving Notches RC 28M (From PennDOT Pub 72M)

F

Milling Length for Transition

<u>TABLE A</u>				
REGULATORY POSTED	MINIMUM	LENGTH OF	MILLING	
SPEED LIMIT (mph)	L	Ь	Чw	
> 65	35′	80′	80′	
≥ 55 TO < 65	35′	80′	60′	
≥ 45 TO < 55	25′	35′	30′	
< 45	15′	25′	20′	

Remember...

- Keep familiar with Pub 408 specifications and project special provisions
- Learn where to find particular specifications in Pub 408 and contract specific details
- Be sure that you are utilizing the appropriate change

Spec Sections Reviewed in Part 1

- 313 Superpave Asphalt Mix Design, Standard Construction, Base Course
- 316 Flexible Base Replacement
- 344 Full Depth Reclamation (FDR)
- 360 Asphalt Treated Permeable Base
- 412 Superpave Mixture Design, Construction of Plant Mixed
 6.3 mm Thin Asphalt Overlay Courses
- 413 Superpave Mixture Design, Standard & RPS Construction of Plant-Mixed Asphalt Course
- **419** Stone Matrix Asphalt Mixture Design, RPS Construction of Plant-Mixed Asphalt Wearing Courses
- 420 Pervious Asphalt

Section 313 Superpave Asphalt Mix Design, Standard Construction, Base Course

Different Sections of Specifications

- 313.1 Description
- 313.2 Materials
- 313.3 Construction
- 313.4 Measurement & Payment

Note that construction related specifications are always in the ".3" portion of ANY section.

Section 313:

Superpave Asphalt Mix Design, Standard Construction, Base Course

• Materials – follows 413.2

=

- Construction follows 413.3 for Standard Spec, except:
 - (b) Weather Limitations: No Placement when
 - prepared surface is wet or
 - air or surface temperature is **35°F or below**.
 - (h) 1.b Spreading & Finishing:
 - For 25.0 mm base and if compacted depth is > 6":
 place in two or more ≈ equal lifts,
 no lift < 3" or > 6".
 - For 37.5 mm base and if compacted depth is > 8":
 - place in two or more \approx equal lifts
 - no lift < 4" or > 8".

Section 313:

Superpave Asphalt Mix Design, Standard Construction, Base Course

- Construction follows 413.3 for Standard Spec, except:
 - (I) Surface Tolerance:

F

• Pavement defective if irregularities are more than 1/4 inch

- (m) Tests for Depth:

- One random core using PTM No. 1 on top lift in each 3000 sq. yds., with additional cores if deficiency suspected
- Measure depth according to PTM No. 737.
- Pavement defective if depth deficient by $\frac{1}{2}$ inch or more

Section 316 Flexible Base Replacement

• Ref: RC 28M, RC 30M (Pub 72M) for Drawings

• SAW or MILL perimeter of area to be replaced

• Vertical Edges clean and coated with PG 64S-22

• Material placed to minimize segregation

Section 344 Full Depth Reclamation (FDR) A Review

Section 344 Full Depth Reclamation (FDR)

- In-place pulverizing and mixing of existing roadway materials
- Stabilizing additives and imported aggregate or RAP to specified depths
- Forms a base layer upon which an asphalt overlay or surface treatment is applied.
- Reclaimed material and RAP must have 95% passing 2-inch sieve
- Emulsified Asphalt: CMS-2, SS-1h, CSS-1h, CSS-1hPM
- Stabilizing Additives: Portland Cement, Hydrated Lime, Fly Ash, Pozzolans, Calcium Chloride, Magnesium Chloride
- All Projects must have an approved mix design.

Section 344 FDR Construction

- Reclaimer must be able to pulverize to a depth of 16 inches at 8 feet wide in one pass and control oversized material.
- Computerized control of injection of water and/or stabilizing agents.
- Motor Grader or approved method for shaping
- 20-ton pneumatic tire roller for 8" depth or less, and for final compaction of depths > 8"
- Vibratory pad foot roller for depths > 8"
- 12-14 ton static steel drum roller for finish rolling
- Allowed to cure until 7-day design strength is met

Section 344 FDR Compaction and Acceptance

- One test for each 3,000 sq. yds. (one lot)
- Density must be 95% of lab results using PTM 402
- Not to exceed 3/4" of irregularity for line, grade, or cross slope
- Surface tolerance: surface irregularity (average of 3 measurements) ≤ 1/2" under 10-foot straightedge.
- Acceptance by surface tolerance and project density specs.

Section 360 Asphalt Treated Permeable Base (ATPBC)

Section 360 Asphalt Treated Permeable Base Course

Asphalt Treated Permeable Base Course

- Asphalt Material: Asphalt Cement, Class PG 64S-22
- Construction: follows 413.3 except:
 - (b) Weather Limitations: No Placement when
 - Prepared surfaces unstable, frozen, or
 - Air or surface temperature is below 35°F
 - (c)4. Preparation of Mixture:
 - Produce ATPBC below 320°F
 - Do not stockpile
 - Place within 8 hours

Asphalt Treated Permeable Base Course

- Construction: follows 413.3 except:
 - -(h) Spreading & Finishing:
 - Maximum 4" compacted lifts,
 - mixture to cool to 100°F before placing subsequent layers

-(i) Compaction:

- Seat ATPBC with 8 to 10-ton steel wheeled rollers (static mode only).
- Compact by 4 roller passes. Do not over compact.
- (j) Mat Density Acceptance:
 - No Density Requirements

Asphalt Treated Permeable Base Course

• 360.3 Construction: follows 413.3, except:

- (I) Surface Tolerance:

- Testing with 10-foot straightedge in stages of 5 linear feet.
- Pavement irregularities more than 1/2" need correction
- DO NOT mill or grind the ATPBC

- (m) Tests for Depth:

- Dig or drill one 6" diameter test hole in each 3000 sq. yds, with additional cores if deficiency suspected
- Measure depth , remove & replace if depth deficient by $\frac{1}{2}$ inch or more

- (n) Protection of Courses:

• Traffic not permitted on ATPBC except to place next layer

Section 412 Superpave Mixture Design, Construction of Plant Mixed 6.3-mm Thin Asphalt Overlay Courses

Superpave Mixture Design, Construction of Plant Mixed 6.3-mm Thin Asphalt Overlay Courses

- Used in Thin Lifts (3/4" min, 1 ¹/₄" max.)
- Useful Tool for Pavement Preservation
- An alternative to microsurfacing and seal coats.
- Mixture Details

F

- PG 64E-22 binder required
- Coarse aggregate: Type A
- Sand fine aggregate must be from the same source as coarse aggregate with SRL rating in Bulletin 14
- No RAP or RAS in mix (virgin)

6.3-mm Thin Overlay Courses Construction details:

- >50°F air and surface temperature
- MTV required, unless waived by Rep.
- Box samples from roadway, hopper, or screed
- Density acceptance by optimum rolling pattern or non-

movement

One-inch thick placed 6.3 mm, SR 220

Section 412 6.3 mm Thin Overlay Courses

Critical points for success:

- -Clean existing surface.
- Proper, uniform tack application
- Selection of compaction rollers
- Begin Rolling immediately.
- Time available for compaction is limited.
- Do not use pneumatic-tire rollers.

Section 413 Superpave Mixture Design, Standard & RPS Construction of Plant-Mixed Asphalt Course

Superpave Mixture Design, Standard & RPS Construction of Plant-Courses with Percent Within Limits and LTS Testing (PWL-LTS)

- <u>Standard</u> and <u>RPS</u> construction of plant mixed asphalt on a prepared surface using a volumetric mixture design developed with the Superpave Gyratory Compactor
- includes additives or modifiers, or plant process modifications or both.
- Acceptance is based on testing of field samples by the LTS and statistical evaluation of sample test results by Percent Within Limits (PWL) procedures.

SP Mixture Design, Stand. & RPS Construction

- Materials
 - Sections 106 & 700, and Bulletins 14 &15, and aggregate SRL
 - Addresses use of RAP, RAM, and RAS
 - Discusses Job-Mix Formula tolerance requirements for completed mix

• Mixture Acceptance

- RPS Construction accepted by lots
- For Standard Construction, use Table C:

Table C Mixture Acceptance

Acceptance Level	Acceptance Method	
Certification Acceptance	Producer Certification of Mixture (Section 413.2(i)2)	
Lot Acceptance	Mixture Acceptance Sample Testing (Section 413.3(h)2)	

SP Mixture Design, Stand. & RPS Construction

- Acceptance by Certification is appropriate for
 - Scratch or Leveling <2", driveway adjustments.
 - Mixtures used by Dept. maintenance forces.
 - Mixtures used by municipal governments.
 - Small quantities < **500** tons in a continuous operation.
 - Mixtures used for parking lots
 - All 4.75 mm NMAS asphalt mixtures
 - Other mixtures, conditions, or applications as approved

All others by Lot Acceptance!

Section 413 SP Mixture Design, Stand. & RPS Construction

- No loose box samples for JMF quantity < 500 ton
- Coring allowed for density acceptance on materials accepted by Certification
- submit the QC plan for the project using (Form CS-413)

Should be discussed at pre-placement meeting

SP Mixture Design, Stand. & RPS Construction

- Weather Limitations
 - Paving allowed from April 1 to October 15 for the following wearing courses:
 - **PG 64E-22 (PG 76-22)**
 - >10M ESALs
 - 4.75 mm mix
 - Other mixes compacted less than 1.5 inches.

Paving allowed from April 1 to October 31 for all other courses

SP Mixture Design, Stand. & RPS Construction

• Weather Limitations

- Do not place asphalt mix when
 - surfaces are wet
 - \odot the temperature of air or surface $\leq 40^{o}F$
- Asphalt preplacement meeting scheduled at least 2 weeks before placement of mixture to review
 - Specifications
 - QC plan
 - Paving sequence
 - Mixture & density acceptance
 - Care and custody of asphalt samples

Section 413, Table A

Temperature of Mixture (°F)					
Class of Material	Type of Material	Chemical, Organic, Foaming Additives, Minimum	Mechanical Foaming Equip/Process Minimum*	Maximum*	
PG 58S-28	Asphalt Binder	215	230	310	
PG 64S-22	Asphalt Binder	220	240	320	
PG 64E-22	Asphalt Binder	240	260	330	
All other binders	Asphalt Binder	The higher of 215 or the minimum temp. specified in Bulletin 25 minus 45F	The higher of 230 or the minimum temp. specified in Bulletin 25 minus 30F	As specified in Bulletin 25	

* Outline in the Producer QC Plan and follow more restrictive temperature requirements provided by the WMA technology manufacturer or Technical Representative(s) for production and placement of the mixture. Determine the SGC compaction temperature for the production QC which yields the same target air voids as the designed JMF . Include the SGC compaction temperature in the Producer QC Plan. Compact the completed mixture in the SGC for QC volumetric analysis at the SGC compaction temperature according to the guidelines provided by the Technical Representative.

Extended-Season Paving

• Written request at 14 calendar days prior to extended season paving

Paving allowed from April 1 to November 15 for the following wearing courses:

- **PG 64E-22 (PG 76-22)**
- >10M ESALs
- 4.75 mm mix
- Other mixes compacted less than 1.5 inches.
- Paving allowed from March 1 to December 15 for all other courses:
- Must use MTV for lengths > 1500 ft.

Extended Season Paving

- Project Representative MUST release Material
- Extended season pre-placement meeting at least 5 days prior to review details of Extended Season Paving Plan (CS-413 ES)
- MUST follow Plan or STOP PAVING
- Density acceptance for RPS and standard paving on stable/uniform bases at Table G depths will be by pavement cores.
- CS-413 ES to be completed and provided to Dept. within 24 hours of completion of paving.
- Extended Season Fall paving will be subject to Spring Evaluation by May 1 as per Pub 336.

SP Mixture Design, Stand. & RPS Construction

• Construction

- (d) Hauling Equipment

- Tightly sealed vehicles
- Provide covers to protect entire load
- Provide insulation/heated or double-walled truck bodies when air temp is below 50°F from October 1 to April 30.

- (e) 1 Asphalt Pavers

• Self-contained power-propelled units & other requirements

-(e) 2 Asphalt Wideners

• Self-contained power-propelled units & other requirements

SP Mixture Design, Stand. & RPS Construction

• Construction

- (f) Rollers

• Steel-wheel, pneumatic tire, vibratory or oscillating rollers

- (g) Preparation of Existing Surface

- Clean & Correct irregularities in binder course
- Paint existing vertical surfaces with asphalt Class TACK, NTT/ CNTT in two or more applications or hot asphalt of class & type designated for course.
- Apply a tack coat, Section 460
- Place scratch and leveling courses as indicated

NOTE:

Paving Notches: Mill existing pavement surface at tie-in with wearing course (use Std Drawing RC -28M & Milling Section 491)

Scratch & Leveling Courses

• Use scratch course to fill wheel ruts & other local small depressions make it even with surrounding pavement.

• Use leveling course to provide a relatively uniform working platform for placing binder or wearing courses.

SP Mixture Design, Stand. & RPS Construction

• Construction

F

-(h) Spreading and Finishing

- Deliver and place at laying temperatures specified in Table A (Section 413.2(e)1.d.)
 - -PG 58S-28 215°F to 310°F
 -PG 64S-22 220°F to 320°F
 -PG 64E-22 240°F to 330°F

- Courses >6" in compacted depth, place in 2 or more equal layers, none <3" or >6" compacted depth
- Do not use rakes.

SP Mixture Design, Stand. & RPS Construction

- Construction
 - -MTV required for RPS pavement
 - -(h)1.c Field Technician
 - Provide Certified Asphalt Field Technician
 - Must be onsite
 - Must carry valid certification card

SP Mixture Design, Stand. & RPS Construction

• Construction

=

- (h)2 Mixture Lot Acceptance (Standard & RPS Construction)
- (h)2.a Lots and sublots
 - Lots established & specific for each JMF
 - Normal lot size = 2,500 Tons
 - Normal sublot size = 500 Tons (5 per lot)
 - 1 box sample + 1 core sample obtained from each sublot (PTM No. 1)

SP Mixture Design, Stand. & RPS Construction

• Lots and Sublots

 If project size or operational conditions dictate. Lot (*final lot*) will be adjusted as in Table D

 Stoppages of 5 days or more, last lot will be adjusted as in Table D.

 New lot established when work resumes after 5-day stoppage.

413.3(h)2.a Lots and Sublots: Table D

Ţ

Re-adjustment of Lot Size & Associated Number of Sublots

Remaining Quantity* Following Last Full Lot	Action
Less than 500 tons <u>without</u> a combination of one mixture acceptance sample and one core	Quantity combined with previous lot, (n=5)
Less than 500 tons <u>with</u> a combination of one mixture acceptance sample and one core	One new sublot defined & quantity combined with previous lot, (n=6)
500 tons to less than 1000 tons <u>without</u> a combination of two mixture acceptance samples and two cores	One new sublot defined & quantity combined with previous lot, (n=6)
500 tons to less than 1000 tons <u>with</u> a combination of two mixture acceptance samples and two cores	Two new sublots defined & quantity combined with previous lot, (n=7)
1000 tons to less than 1500 tons <u>without</u> a combination of three mixture acceptance samples and three cores	Two new sublots defined & quantity combined with previous lot, (n=7)
1000 tons to less than 1500 tons <u>with</u> a combination of three mixture acceptance samples and three cores	New lot defined, (n=3)

413.3(h)2.a: Table D continued

Re-adjustment of Lot Size & Associated Number of Sublots

Remaining Quantity* Following Last Full Lot	Action
1500 tons to less than 2000 tons <u>without</u> a combination of four mixture acceptance samples and four cores	New lot defined, (n=3)
1500 tons to less than 2000 tons <u>with</u> a combination of four mixture acceptance samples and four cores	New lot defined, (n=4)
2000 tons to less than 2500 tons <u>without</u> a combination of five mixture acceptance samples and five cores	New lot defined, (n=4)
2000 tons to less than 2500 tons <u>with</u> a combination of five mixture acceptance samples and five cores	New lot defined, (n=5)

• (h)2.a.1

 Partially Completed Lot (n=2 or less): When partially completed lot (2 sublots or less) cannot be combined with most recent completed lot, samples will be independently evaluated

SP Mixture Design, Stand. & RPS Construction

• JMF's less than 2500 tons

F

- JMF's > 500 tons and < 2500 tons, tonnage
 considered a lot and divided into 5 equal sublots
- JMF's ≤ 500 tons, tonnage may be considered a lot and divided into 3 equal sublots, if density acceptance by pavement cores (an option) mixture acceptance is only by certification

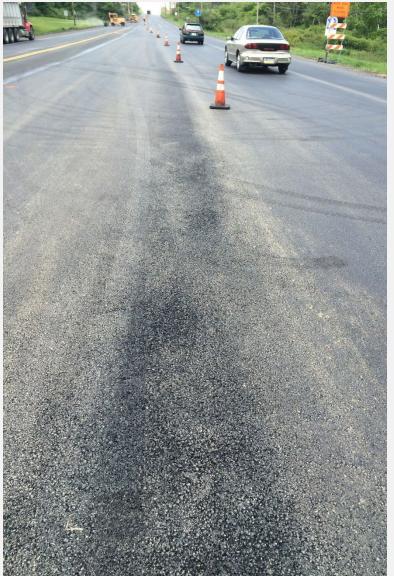
*For total JMF less than 2500 tons, Table D does not apply, do not use!

Lot – Sublot Definitions

=

- Normal lot size is 2500 tons with 5 sublots of 500 tons each.
- A *complete lot* will have at least 3, but no more than 7 sublots
- Lots with less than 3 sublots are "incomplete"
- A *complete sublot* MUST have a core and a loose (mixture or box) sample

Section 413 SP Mixture Design, Stand. & RPS Construction


- Evaluating Pattern Segregation
 - Inspector will notify Contractor of observed pattern segregation
 - Contractor may continue at own risk
 - Project Representative will witness the PTM 751 (pavement surface macrotexture depth test)
 - Unacceptable segregation if average texture depth between the nonsegregated area and segregated areas exceeds 0.024 inch.

60

Section 413 SP Mixture Design, Stand. & RPS Construction

- Test Section for Segregation
 - If segregation identified, stop paving!
 - Department will evaluate segregation to determine corrective work
 - Test section then placed, <200 tons</p>
 - Resume normal paving after successful test section

SP Mixture Design, Stand. & RPS Construction

- Defective Pavement because of Segregation
 - Cores taken 3 from segregated area & 3 from non-segregated area, tested for density, asphalt content and gradation
 - If tests determine pavement is defective, remove & replace full width of affected lane plus minimum of 5 feet beyond each end of unaccepted area.

SP Mixture Design, Stand. & RPS Construction

• Flushing

– Provide a mix that will not flush

 Flushing is continuous or repeated areas of excessive asphalt on the pavement surface

SP Mixture Design, Stand. & RPS Construction

• Evaluating Flushing

F

- When flushing is observed, Project Representative will notify Contractor
- Contractor may continue at its own risk while adjusting to eliminate further flushing
- Average pavement surface macrotexture depth is determined by PTM 751 in suspected flushing area
- If Average depth of macrotexture ≤ 0.006 inches, then.
 pavement considered flushed & defective

Section 413 SP Mixture Design, Stand. & RPS Construction

• Test Section for Flushing

=

- If flushing identified, stop paving!
- Department will evaluate flushing to determine corrective work
- Remove & replace defective wearing course for full lane width + minimum 5 feet beyond each end of defective area
- After Project Representative allows paving to resume, place test section not to exceed 200 tons.
- Normal paving can be resumed after construction of an entire test section without flushing.

SP Mixture Design, Stand. & RPS Construction

• Compaction

=

- Compact to achieve required density & eliminate all roller marks
- Adjust speed, amplitude, frequency, etc., to eliminate displacement, shoving, cracking, or aggregate breakage.
- -Use pneumatic-tire for compacting scratch courses.
- For roller inaccessible areas, use mechanical vibrating hand tampers

SP Mixture Design, Stand. & RPS Construction

• Mat Density Acceptance

F

- Standard Construction (non-RPS): Density acceptance according to one of the levels in Table F
- RPS: Density acceptance by Pavement Cores (lot acceptance)
- Department determines density-acceptance level (QC Paving Plan)

SP Mixture Design, Stand. & RPS Construction

- Mat Density Acceptance
 - Standard Construction (non-RPS)

Table F: Density Acceptance

Density Acceptance Level	Acceptance Criteria	
Non-movement	Table H	
Optimum Rolling Pattern	Table H	
Pavement Cores*	Table I	
*Only when mixture is accepted by lots		

Cores may be used for density acceptance for quantities < 500 ton

SP Mixture Design, Stand. & RPS Construction

• Mat Density Acceptance

=

- Non-Movement (Density accepted when mix does not move under compaction equipment). Use for
 - Scratch or leveling < 1" or \leq 110 lbs./yd².
 - Area of paving/patching < 4' in width.
 - Following materials if determined non-critical for density:
 - Materials placed in < 500 tons continuous.
 - Mixtures placed on unstable or non-uniform bases.
 - Mixtures used for patching, widening, shoulders*, driveway adjustments, or other miscellaneous applications.

*shoulders which are considered critical will be accepted by pavement cores

SP Mixture Design, Stand. & RPS Construction

- Mat Density Acceptance -Optimum Rolling Pattern
 - Materials placed in small quantities < 500 tons.
 - Mixtures placed on unstable or non-uniform bases.
 - Leveling or other courses ≥ 1 " or $\geq 110 \text{ lbs./yd}^2$.
 - Mixtures used for patching, widening, shoulders*, driveway adjustments, or other miscellaneous applications.
 - Mixtures placed at < minimum compacted depths in Table G

*shoulders which are considered critical will be accepted by pavement cores

SP Mixture Design, Stand. & RPS Construction

- Optimum Rolling Pattern
 - Density tested by nuclear gauge (PTM 402) or electrical impedance gauge (PTM 403)
 - Inspector & contractor's certified field technician present
 - -Nuclear gauge must have licensed operator
 - -Use approved gauges or approved equal
 - -Use procedure and forms in PTM 402/403

Section 413 SP Mixture Design, Stand. & RPS Construction

Mat Density Acceptance

- Pavement Cores (Standard or RPS)

- Material placed at minimum compacted depths according to Table G.
- Materials placed on stable and uniform bases.

72

SP Mixture Design, Stand. & RPS Construction

- Mat Density Acceptance
 - Pavement Cores (Std or RPS)

Table G: Mixture Minimum Compacted Depths

Mixture	Minimum Depth
9.5 mm Wearing Course	1 ½" (40 mm)
12.5 mm Wearing Course	2" (50 mm)
19 mm Wearing and Binder Courses	2 ½" (60 mm)
25 mm Binder Course	3" (80 mm)

SP Mixture Design, Stand. & RPS Construction

• Pavement Cores (Std or RPS)

F

- Density Acceptance Samples
 - Locations selected by PTM 1, PTM 729, &PTM 746
 - 6-inch cores no later than day following placement
 - If damaged, replacement obtained from within 12 inches of original
 - Hole backfilled with same JMF & sealed within 24 hours

SP Mixture Design, Stand. & RPS Construction

- Pavement Cores (Std or RPS) – Density Acceptance Samples
 - Normal lot size = 2,500 Tons
 - Normal sublot size = 500 Tons (5 per lot)
 - 1 core obtained from each sublot
 - Identify by lot & sublot, location, placement date, mixture type, & as acceptance samples (Sample Class AS)
 - Submit samples for one lot in one container.
 - Cores tested by LTS

Section 413

SP Mixture Design, Stand. & RPS Construction

• Pavement Cores (Std or RPS) - 413.3(j)4.d Acceptance Sample Testing

=

- Density cores tested according to PTM 715 & PTM 716
- Acceptance as specified in Section 413.4(a)4 or 413.4(b)
- If cores not taken within 1 day after mix placement or if density for 2 consecutive lots or a total of 3 lots does not meet density requirement for 100% payment, stop paving operations.
- Pavement resumes after evaluation of problem, approved proposed solution, & Department authorization

Section 413 SP Mixture Design, Stand. & RPS Construction

- (k) Joints
 - -(k)1. Longitudinal Joints

-We Will Watch the Video in Part 2.

77

Section 413

SP Mixture Design, Stand. & RPS Construction

• Surface Tolerance

F

- Test with 12-foot straightedge
- Defective if irregularities > 3/16"
- Tests for Depth
 - Density acceptance by lots, measure depth of each sublot core (PTM 737)
 - Defective if depth deficiency >1/4" or depth deficiency in 3 or more adjacent cores > 1/8" as measured by PTM 737

Section 413: Superpave Mixture Design, Standard & RPS Construction

- Protection of courses
 - Adequate stability must be obtained.
 - No traffic for 24 hours or if the mat temperature is 140°F (60°C) or less

• Defective work

-Remove, replace or repair defective work as directed.

Time Available for Compaction (TAC)

Computer Program used to determine TAC

PaveCool Asphalt Pavement Cooling Tool
 © 2000-2006 Minnesota Department of Transportation

Free Download from Website:

http://www.dot.state.mn.us/app/pavecool/index.html

RECOMMENDED MINIMUM ASPHALT MIXTURE PLACEMENT TEMPERATURE BY COMPACTED THICKNESS FOR ASPHALT PAVEMENTS* CONTAINING PG 64S-22

	Surface Temperature	3/4"	1"	1½"	2"	3" and greater
Publication 2 Project Office Manual, Part C, Section 4,	40 to 50F	-	310F	300F	285F	275F
Page 3-3	50 to 60F	310F	300F	295F	280F	270F
	60 to 70F	300F	290F	285F	275F	
	70 to 80F	290F	285F	280F	270F	
	80 to 90F	280F	275F	270F		
	90F	275F	270F			
	Rolling Time (min.)	6	8	12	15	15

• Measurement & Payment

F

 Mixture Acceptance by Certification & Density Acceptance by Non-Movement and Optimum Rolling Pattern

TABLE H: Contract unit price adjustments - Mixture Acceptance by Certification

 Mixture Acceptance by Lot and & Density Acceptance by Non-Movement, Optimum Rolling Pattern, or Pavement Cores

TABLE I: Upper & Lower Spec Limits for Calculating Percent Within Tolerance

TABLE J: Dispute Resolution Retest Cost Table

Section 413.4: Measurement & Payment TABLE H - Mixture Acceptance by Certification

For Asphalt Content

NMAS	Criteria	Value		PF, %
All sizes	Printed Tickets	<u>Al least 90%</u> is ±0.2 of JMF		100
		Less than 90% is ±0.2 of JMF		85
19 mm	19 mm QC	Single, n=1	n≥ 2	
and Sample smaller Testing	-	±0.7%	±0.5%	100
	lesting	±0.8% to 1.0%	±0.6%	85
		>±1.0%	$\geq \pm 0.7\%$	RR or 50%
25 mmQCandSamplelargerTesting	±0.8%	±0.6%	100	
	-	±0.9% to 1.2%	±0.7%	85
	Testing	>±1.2%	$\geq \pm 0.8\%$	RR or 50%

Section 413.4: Measurement & Payment TABLE H - Mixture Acceptance by Certification For Gradation

NMAS	Criteria	Va	PF, %	
		n=1	n≥ 2	
All	QC	±3.0%	±2.1%	100
sizes	Sample Testing for	±3.1% to ±4.0%	±2.2% to ±2.7%	85
	% Passing #200 Sieve	>±4.0%	≥±2.8%	RR or 50%
All	QC	±6%	±4%	100
sizes	Sample Testing for	±7% to ±8%	±5%	85
	% Passing #8 Sieve	>±8%	$\geq \pm 6\%$	RR or 50%

See footnotes of Table H for details

84

413.4 Measurement and Payment

• (a)4.

Mixture Acceptance by Lot and

- **o** Density Acceptance by
 - ✓ Non-Movement
 - ✓ Optimum-Rolling Pattern
 - ✓ Pavement Cores

Adjust Payment according to PWL. Use Upper and Lower Spec Limits in Table I.

For Asphalt Content	Testing Criteria		
Mixture NMAS	Lower Spec Limit (L)	Upper Spec Limit (U)	
	Asphalt Content from JMF, %		
9.5 mm, 12.5 mm	-0.4	+0.4	
19 mm	-0.5	+0.5	
25 mm and 37.5 mm	-0.6	+0.6	

Section 413.4: Measurement & Payment

Mixture Acceptance by Lot		Testing Criteria			
	For Gradation		Lower Spec Limit (L)	Upper Spec Limit (U)	
	Mixture NMAS		Passing No. 200 Sieve from JMF, %		
	All Sizes			+1.5	
			Passing PCS	from JMF, %	
	9.5 mm (PCS=2.36 mm)			+5	
	12.5 mm (PCS=2.36 mm)		-5	+5	
	19 mm (PCS=4.75 mm)		-8	+8	
	25 mm (PCS=4.75mm)		-9	+9	
37.5 mm (PCS =4.75 mm)		-9	+9		
PCS = Primary Control Sieve					

For Mat Density

	Testing Criteria		
Mixture NMAS	Lower Spec Limit (L)	Upper Spec Limit (U)	
	Mat Density *		
All 9.5 mm, 12.5 mm Sizes	92.0	98.5	
All 19 mm Courses, 25 mm Binder Courses	91.0	98.0	
25 mm and 37.5 mm Base Courses	90.0	No Upper Limit	
* Where limits=percent theoretical maximum density)			

- 1. Lot results on asphalt content, gradation, and density are used with lower and upper spec limits to determine Percent Within Limits (PWL).
- 2. PWL for each parameter is used to determine a single Pay Factor (PF) for that parameter.
- **3.** An overall pay factor (OLPF) is determined from combination of individual pay factors. See next slide.

OLPF=
$$(0.50 \text{ x PF}_{D}) +$$

(0.30 x PF_{AC}) +
(0.10 x PF₂₀₀) +
(0.10 x PF_{PCS})

Where

OLPF = Overall Lot Pay Factor

 $PF_D = Pay$ Factor for In-Place Density

 $PF_{AC} = Pay Factor for Asphalt Content$

 $PF_{200} = Pay$ Factor for Percent Passing the 75 mm (No. 200) Sieve

 PF_{PCS} = Pay Factor for Percent Passing the Primary Control Sieve (PCS)

LOT PAYMENT = C_p (OLPF)/100

Where

Cp = Contract unit price per lot (unit price times lot quantity) and

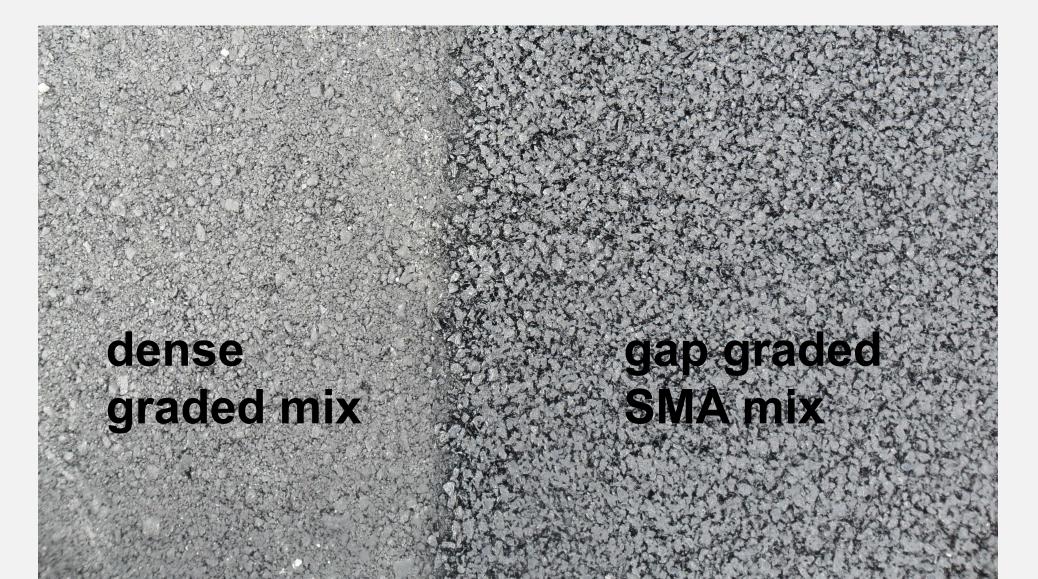
OLPF = Overall Lot Pay Factor

P

Section 419 Stone Matrix Asphalt Mixture Design, RPS Construction of Plant-Mixed Asphalt Wearing Courses

Section 419 Stone Matrix Asphalt Mixture Design, RPS Construction of Plant-Mixed Asphalt Wearing Courses

- RPS construction of plant-mixed Stone Matrix Asphalt (SMA) on a prepared surface
- **Materials:** Refers to Sections 106 & 700; discusses aggregates, SRL, use of stabilizers, Job-Mix Formula and tolerance requirements for completed mix
- Mixture Composition:
 - Table A (Section 413.2(e)1.d.5)
 - Temperature of Mixture


PG 64E-22 240°F to 330°F

- Mixture Acceptance:
 - By lot acceptance
 - Not accepted by certification

Dense Graded vs. SMA (Gap Graded)

• Construction

F

- -(a) Paving operation QC Plan: Refers to 413.3(a),
 Contractor must submit a paving operation QC plan for the project (Form CS-413)
- -(b) Weather Limitations: Paving prohibited:
 - when surfaces are wet
 - when the temperature of air or surface $\leq 50^{\circ}$ F
 - Paving prohibited from Oct 1 OR Oct 16 to March 31 (depends on County)

Section 419: Stone Matrix Asphalt, RPS Construction

- Construction
 - -(d) Hauling Equipment: Refers to 413.3(d)
 - -(e) Asphalt Pavers: Refers to 413.3(e)
 - -(f) Rollers
 - Minimum 3 steel-wheeled rollers, each with 10-ton weight
 - Do not operate in vibratory mode unless demonstrated and approved that no breaking of aggregate or flushing of asphalt binder results

Section 419: Stone Matrix Asphalt, RPS Construction

• Construction

-(g) Demonstration

- Before paving, perform trial demonstration outside projects limits by placing minimum of 100 tons.
- Simulate actual hauling time for project
- Obtain & test 3 loose mixture samples at plant for asphalt content, gradation, & draindown & 3 cores from demo pavement for density
- If vibration is to be used, demo vibratory rolling

Section 419: Stone Matrix Asphalt, RPS Construction

• Construction

F

- -(h) Preparation of Existing Surface: Refer to Section 413.3(g)
- -(i) Spreading & Finishing:
 - 1.a Placing. Use MTV to apply final surface course (MTV to provide additional mixing)
 - 1.b Spreading & Finishing. Refer to Section 413.3(h)1.b, do not allow surface to flush
 - 1.c Field Technician. Refer to Section 413.3(h)1.c, Field Technician required

• Construction

F

- -(i) Spreading & Finishing:(i)2. Mixture & Density Lot Acceptance
 - -Lot acceptance required for RPS construction
 - -Lot is 2500 tons with 5 sublots of 500 tons each
 - -One core obtained from each sublot for density acceptance
 - -Two loose box samples obtained from each sublot: one for mixture acceptance and one for Gmm verification

Section 419 Stone Matrix Asphalt, RPS Construction

• Construction

F

NOTE: A completed sublot will contain one core sample and two loose mixture (box) samples **WHY?**

This spec is to address the need for the Gmm verification sample

Section 419

Stone Matrix Asphalt, RPS Construction

• G_{mm} Verification Samples may be taken from auger tunnel or UNCOMPACTED MAT and may require an additional random sampling procedure;

This must be discussed at the pre-placement meeting and may vary by project and District.

Section 419

Stone Matrix Asphalt, RPS Construction

- Construction
 - -(i) Spreading & Finishing:
 (i)2. Mixture & Density Lot Acceptance
 Project quantities of > 500 to < 2500 tons, the quantity will be divided into 5 equal sublots

Project quantities of 500 tons or less the quantity will be divided into 3 equal sublots

Section 419 Stone Matrix Asphalt, RPS Construction

• Construction

F

A completed LOT must have a minimum of 3 sublots

An incomplete (PARTIALLY COMPLETED) lot may have one or two sublots and are tested under different criteria

Section 419

Stone Matrix Asphalt, RPS Construction

• Construction

F

- (j) Compaction: Follows Section 413
 with rollers as specified in Section 419.3(f)
- -(k) Mat Density Acceptance
 - 93%-98% for 100% payment (Table F, Section 419.4(a)3
- (I) Joints: Follows Section 413.3(k)(Vertical or Notched Wedge Joint allowed)

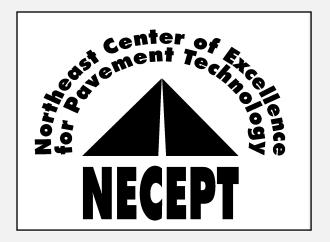
Section 419

Stone Matrix Asphalt, RPS Construction

- Construction
 - -(m) Surface Tolerance: Section 413.3(l)
 - -(n) Tests for Depth: Section 413.3(m)
 - -(o) Protection of Courses: Section 413.3(n)
 - (p) Defective Work: Remove & replace as specified for Section 413 (Flushing, surface tolerance, depth, etc.)

Section 420 Pervious Asphalt

- Allows infiltration of surface water
- 9.5-mm or 19-mm mixes
- Ambient temperature $\geq 50^{\circ}$ F
- NO tack between layers
- 4 passes with static steel drum roller
- No pneumatic tire roller allowed
- DO NOT over compact or crush aggregate
- Surface irregularities > 3/8 inch are unacceptable
- Do NOT grind or mill
- Cool to 100 °F between layers


Summary (Part 1)

- Discussed key elements of several Spec sections:
- 313 Superpave Asphalt Mix Design, Standard Construction, Base Course
- **316** Flexible Base Replacement
- 344 Full Depth Reclamation (FDR)
- **360** Asphalt Treated Permeable Base
- **412** Superpave Mixture Design, Construction of Plant Mixed 6.3 mm Thin Asphalt Overlay Courses
- **413** Superpave Mixture Design, Standard & RPS Construction of Plant-Mixed Asphalt Course
- **419** Stone Matrix Asphalt Mixture Design, RPS Construction of Plant-Mixed Asphalt Wearing Courses
- 420 Pervious Asphalt

An Update on PennDOT Specifications (Part 2)

Spec Sections Reviewed in Part 2

- 404 Evaluation of Asphalt Pavement Ride Quality and Payment of Incentive
- **405** Evaluation of Asphalt Pavement Longitudinal Joints Density and Payment of Incentive/Disincentive
- **413** Superpave Mixture Design, Standard & RPS Construction (The Part on Discussion of Joints)
- 460 Asphalt Tack Coat
- 483 Polymer-Modified Emulsified Asphalt Paving System (Micro-Surfacing)
- 489 Ultra Thin Bonded Wearing Course
- 491 Milling of Asphalt Pavement Surface

And Brief Discussion of WMA Technologies & Safety Edge

Section 404 Evaluation of Asphalt Pavement Ride Quality and Payment of Incentive

Section 404 Evaluation of Asphalt Pavement Ride Quality and Payment of Incentive

Evaluating asphalt pavement surface profile & determining ride quality incentive

- Measure surface profile (IRI)using PTM No. 428
- Determine payment based on the IRI
- Various exclusions:
 - ramps less than 1500 feet in length
 - tapers, shoulders, transition areas, bridge approaches, etc.

IRI =International Roughness Index

Section 404 Ride Quality and Payment of Incentive Verification Process

• IRI values and payment data to be verified on random projects (FHWA req.)

• Data sent to PennDOT BOMO for verification

=

• PennDOT needs lot IRI summary <u>AND raw, unfiltered</u> <u>data files (see PTM 428 for details)</u>

Lot Size

- Full lot = **528 feet** of a single lane of pavement $(1/10^{\text{th}} \text{ mile})$
- Lots start at beginning of paving and continue to end of paving for each pavement lane and ramp that is 12 feet or wider
- Partial lot designated at end of paving or at an excluded area and evaluated as a percentage of a full lot

Construction

- Equipment & Operator
 - The equipment meets requirements of PTM No. 428
 - Calibrate distance sensor
 - Check profile system calibration daily in presence of Inspector
 - Provide A PennDOT <u>certified operator</u>

Testing

- (1) Lots
- Provide traffic control, clean pavement as necessary
- Determine surface profile of each lot according to PTM No. 428, in presence of Inspector

(2) Excluded Areas

- Measure with 12 -foot straightedge, parallel to centerline
- Advance in five-foot increments

Acceptance

1. Lots. Corrective action needed if

- IRI exceeds max. value of Table A (Section 404.4)
- Irregularity greater than 3/16" when tested with a 12-foot straightedge

2. Excluded Areas. Not included for incentive payment

• To be corrected if irregularities more than 3/16"

Corrective Action

- Perform before testing for pavement depth
- Use carbide grinding, diamond grinding, or remove & replace
- Produce surfaces that are neat, of uniform texture, with not more than
 1/8-inch deviation (such as ridge or valley) with existing pavement

Defective Work:

- Lot is defective if:
 - IRI exceeds maximum acceptable IRI specified in Table A Schedule A or B
 - Any individual bump with irregularity of more than 3/16"
 - Surface adjacent to another lot deviates more than 1/8"
- Remove & replace defective areas and retest lot

Measurement & Payment

- Payment:
 - Lots not defective will be paid according to IRI using Table A Schedule A or B
 - On defective lots, payment based on retest for IRI after corrective action.

Remove & replace defective areas and retest lot

Section 404 Ride Quality and Payment of Incentive Table A Schedule for Ride Quality Incentive Schedule A

F

For Expressway Work Using Three Operations

IRI inches/mile/lot	Amount
<u>< 35</u>	\$600
<u>≤</u> 50	\$300
<u>< 60</u>	\$150
<u>≤</u> 70	\$0
>70	Corrective Action Required

F

Ride Quality and Payment of Incentive

Table A

Schedule for Ride Quality Incentive Schedule B

For Expressway Work Using Two Operations And Non-Expressway Work Using Two or More Operations

IRI inches/mile/lot	Amount
<u>< 45</u>	\$600
<u>< 55</u>	\$300
<u><</u> 70	\$150
<u>< 90</u>	\$0
> 90	Corrective Action Required

At least two of these operations must be indicated in areas included in ride-quality lot measurement:

- Profile Milling (Section 492)
- Asphalt Base Course
- Asphalt Scratch Course
- Asphalt Leveling Course
- Asphalt Binder Course
- Asphalt Wearing Course

Section 405 Evaluation of Asphalt Pavement Longitudinal Joints Density and Payment of Incentive/Disincentive

Evaluation of Asphalt Pavement Longitudinal Joints Density and Payment of Incentive/Disincentive

- Usage: For use on any project meeting <u>ALL</u> of the following criteria:
 - RPS (regardless of network) or Standard pavements on the National Highway System (NHS)
 - Density acceptance by cores
 - Length of testable longitudinal joint >12,500 feet

Longitudinal Joints Density and Payment of Incentive/Disincentive

• Work

 Evaluating longitudinal joint samples on the surface wearing course for determining densities and the incentives/disincentive

• Construction

 Lots for this spec completely independent from lots defined in other sections of the Specs for pavement acceptance

• Lot Size

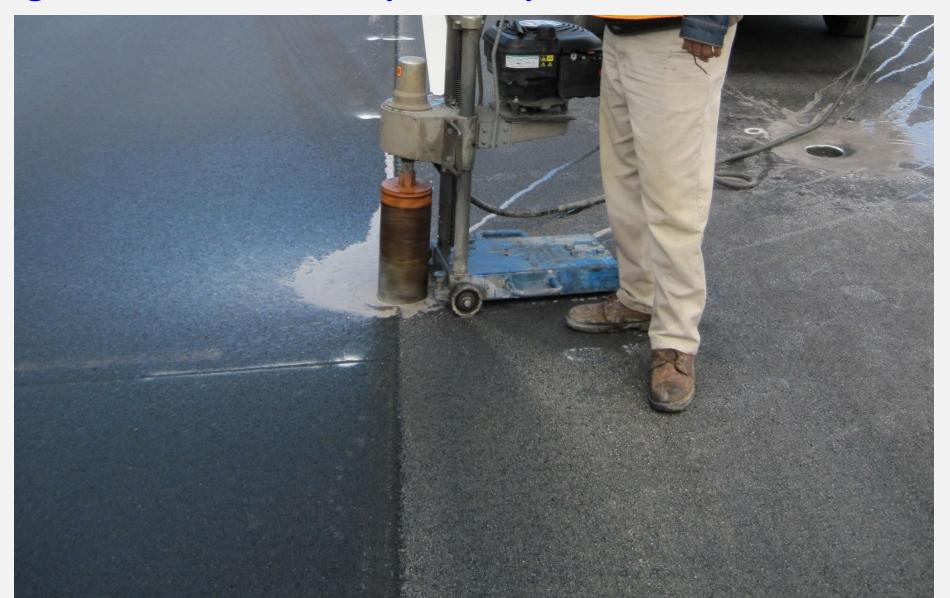
- Full lot is 12,500 feet of longitudinal joint
- 5 sublots of **2,500** feet per full lot
- One joint core drilled per sublot as paving progresses until full lot obtained
- Single lot need not be contiguous & may include multiple joints within project

Longitudinal Joints Density and Payment of Incentive/Disincentive

Quality Control Strip

- On first day paving of long. joint, obtain 5 randomly located core samples on long. joint for QC density testing (this is in addition to incentive/disincentive payment sublot joint cores)
- Cores to be tested and results supplied within 24 hours
- Excluded Areas. Following joint areas excluded from lots:
 - Joints where one or both sides pavement were accepted for density by other means
 - Joints where one side is formed by existing pavement not constructed under this project
 - Areas within **1 foot longitudinally** of an obstruction
 - Small areas (intersections, gores, transitions) not allowing for consistent joint construction

Longitudinal Joints Density and Payment of Incentive/Disincentive


• Sampling

- One 6-inch core in each sublot located using **PTM 1 and PTM 729** no later than day following placement.
- For vertical joints center core over surface joint.
- For notch-wedge joints, center core 6 inches or one half of joint taper width away from joint line in direction of wedge.
- Identify by lot & sublot, location, placement date, mixture type, & as acceptance samples (Sample Class AS)
- Cores tested by LTS
- If damaged, replacement obtained from within **12 inches** of original
- Hole backfilled with same JMF & sealed within 24 hours

=

Longitudinal Joints Density and Payment of Incentive/Disincentive

Longitudinal Joints Density and Payment of Incentive/Disincentive

- Percent Within Limits (PWL)
 - For each lot, PWL and average density determined.
 - Lower Spec Limit to find PWL is 91%
 - No Upper Spec Limit
- Measurement and Payment
 - Uses Percent within Limits (PWL) from Section 106.03(a)3 in Table A of Section 405.4 for payment by lot.
 - Partial lots with **fewer than 3 sublots** are combined with the previous lot.
 - Partial lots with three or more sublots will stand as a separate lot.

Longitudinal Joints Density and Payment of Incentive/Disincentive

Table A (Section 405.4)

Ę

Lot by Lot Payment Schedule for Longitudinal Joint Incentive/Disincentive		
Lot PWL	Amount	
$PWL \ge 81$	(PWL – 80)/20 × \$7,500 (Incentive)	
PWL = 50 to 80	\$0	
$PWL \le 49$	$(50 - PWL)/50 \times $12,500$ (Disincentive)	

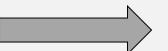
Incentive/disincentive payment for a lot containing other than 5 sublots		
N = 3 (i.e., three Sublots)	60% of the Table A amount	
N = 4 (i.e., four sublots)	80% of the Table A amount	
N = 6 (i.e., six sublots)	120% of the Table A amount	
N = 7 (i.e., seven sublots)	140% of the Table A amount	

Section 413.3(k) Joint Construction

Section 413.3(k): Joint Construction

Longitudinal Joints

- Offset joints ~ 6 inches.
- Joint in top layer at centerline of 2-lane roadways & within 12" of lane in multilane roadways.
- Avoid joints directly beneath planned pavement markings
- Before placing abutting lanes, paint joint face with PG binder in mix or PG 64S-22.
- Placement of mix adjacent to compacted lane, overlap previously placed lane by 1 to 1 ¹/₂ inches.
- DO NOT bump back or lute overlapped material.
- Compact joint with first forward pass of roller 6 to 12 inches from the joint; then overlapping the joint 2 to 6 inches on the backward and subsequent passes.



Section 413.3(k): Joint Construction

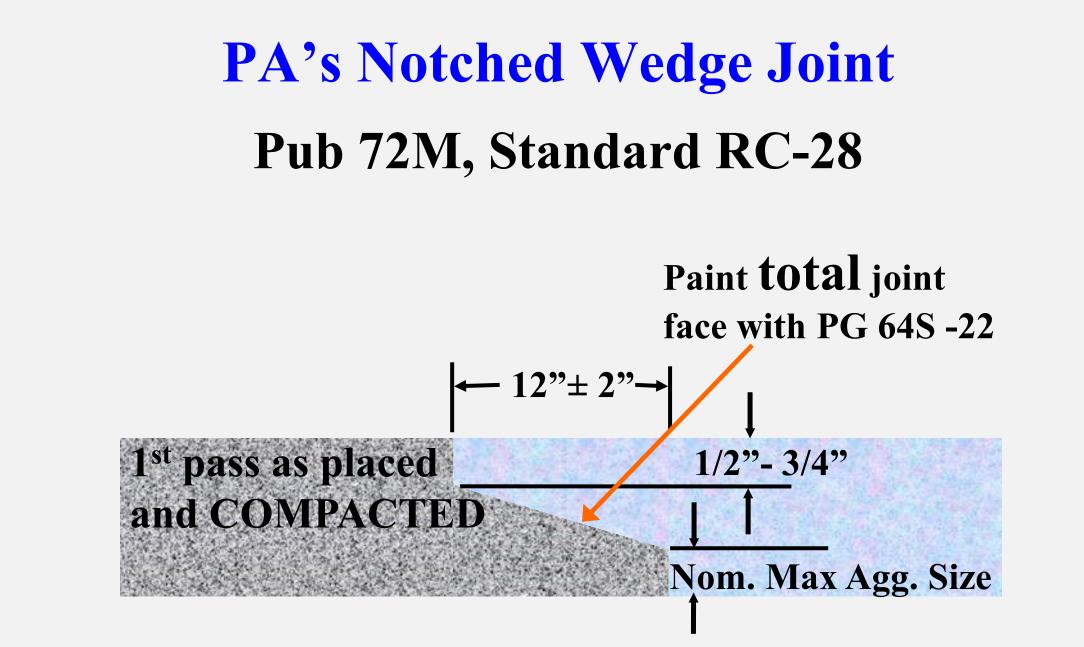
Longitudinal Joints

- All longitudinal joints need to be overbanded with PG 64S-22 binder.
- Overband must be 4±1 inches.
- Thickness of band: $1/16" \pm 1/32"$
- Temperature of sealant: between 265 $^\circ F$ and 320 $^\circ F$
- Sealant placed when air temperature is $\geq 40\ ^\circ F$

Overbanding the Joint

Section 413.3(k): Joint Construction

Longitudinal Joints


- Vertical Joints

- For base, binder and wearing courses
- Place abutting lane same day, leaving less than 25 lineal feet of exposed edge

-Notched Wedge Joints

- For wearing & binder course with nominal maximum aggregate size of 19.0 mm or smaller
- Use Standard Drawing RC-28
- If joint next to opposing traffic, place abutting lane within 1 day
- If next to traffic in same direction, place abutting lane within 2 days

Longitudinal Joint Construction

Paint joint faces with PG 64S -22 binder

- Or PG in mix
- Thin even application
- Helps bonding, waterproofing and filling voids

Applying Tack to the Shoulder Joint

What We Don't Want

Ę

Trial Unit for Forming and Compacting NWJ

Clean Placed NWJ

Longitudinal Joints

What happened here?

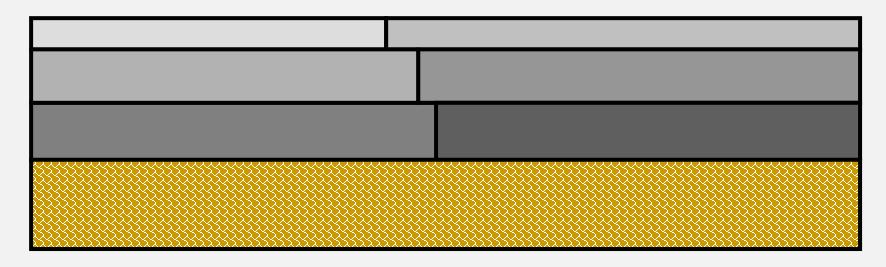
Why New Procedures?

=

Common sight on Pennsylvania Highways

Longitudinal Joint Construction

- 1) Plan work to minimize longitudinal joints
 - No joint always superior
 - Utilize paver extensions when practical & cost effective
 - Pave in echelon (two pavers)
 creating a hot joint for superior
 performance
 - Does this joint need TACK?



Longitudinal Joint Construction

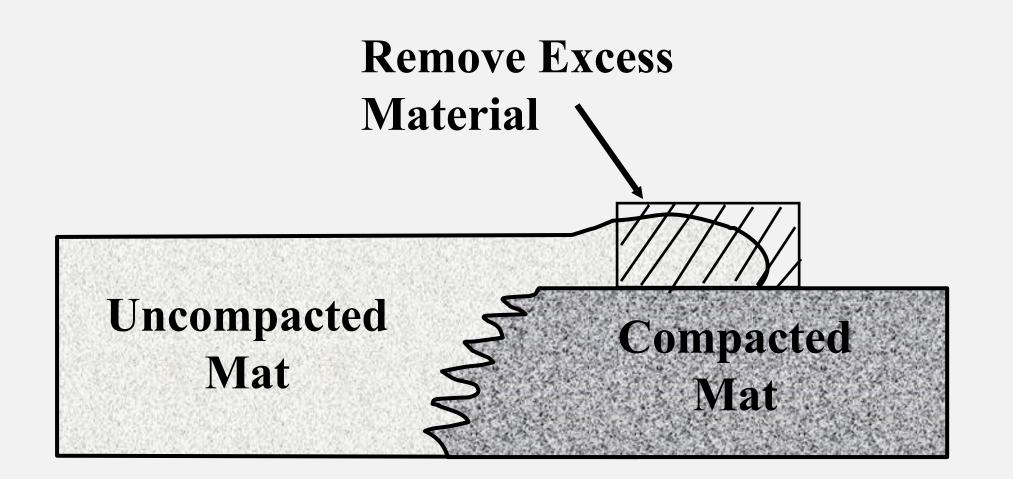
Ę

2) Offset joints from layer below by 6"

Where should the top surface joint be located?


note narrow line and similar texture on both lanes

Longitudinal Joint Construction Do not "bump" material, NO Luting----just roll overlapped material into pavement



If too large an overlap occurs...

Bridging From Improper Overlap

Section 413.3(k): Joint Construction

• (k) Joints

– Transverse Joints

- Perpendicular to centerline
- Use temporary bulkheads or saw joint
- Paint joint face with PG binder in mix or PG 64S-22.

- Other Joints

• Seal joint for new wearing course abutting existing pavement; apply min 6 inches on both sides of joint, using PG binder in mix, PennDOT Material Class Tack or NTT/CNTT.

Longitudinal Joint Construction PennDOT/PAPA Training Video Watch the Video

Recap of Video

- Plan ahead to avoid joints whenever possible.
- Offset joints 6" from previous layer.
- TACK must be **6**" wider than pavement.
- First Pass MUST be straight.
- Overhang Roller **3-6**" on unsupported edge.

Recap of Video – Second Pass

• Lightly coat entire surface of NWJ or vertical joint with **64S-22** or asphalt binder in the mix.

• Paver should overlap previous lane by 1-1/2 inches.

• Depth of overlap should match rolldown.

• NO LUTING or RAKING

Recap of Video –Second Pass Compaction

- Compact from edge toward joint
- Leave about 18 inches of uncompacted material at NWJ
- Last pass overlaps Longitudinal joint by 2-6 inches
- Joint must receive as many passes as the rest of the mat

Section 460 Asphalt Tack Coat

Section 460 Asphalt Tack Coat

• Work

 Conditioning & treating of an existing surface with an application of bonding material

• Material

Class of	Type of Material	Application Temperature °F	
Material		Minimum	Maximum
TACK	Anionic or Cationic Emulsified Asphalt	90	150
NTT/CNTT	Anionic or Cationic Emulsified Asphalt	140	180

Section 460 Asphalt Tack Coat

• Construction

- Asphalt distributor capable to apply material within a tolerance of 0.02 gal/sq yd, up to 15' wide.
- Hand-spraying equipment for inaccessible areas.
- Distributor's application rate to be determined using **PTM 747**.
- Apply tack only when **air temperature is 40°F and rising** and the surface is dry.
- Test section for each course to determine coverage and uniformity
- Tack to be 6 inches wider than paving panel on BOTH sides
- Tack to "break" before being disturbed or start of paving

Tack Coat Inspection

- Road must be CLEAN and DRY (broom alone may not be enough).
- Obtain % Asphalt from BOL.
- Calculate the required residual application rate: Sec. 460, Table B.
- Apply 100-ft MINIMUM test strip 6" beyond longitudinal joint (s).
- Adjust bar height, pressure, and nozzles to ensure 100% uniform coverage.
- DO NOT begin paving until an acceptable test strip has been demonstrated.
- Allow the tack coat to break and set and ensure that tracking has been minimized.

Section 460 – TABLE B Uniform Asphalt Residual Rates by Surface Type

Surface Type	Uniform Asphalt Residual Rates (RR) (gallons per square yard)	
New Asphalt Paving	0.03 to 0.05	
Existing Asphalt Paving	0.04 to 0.07	
Milled Surface (Asphalt & Portand Cement Concrete)	0.04 to 0.08	
Portland Cement Concrete	0.04 to 0.07	

Review application/residue rates at Pre-Placement Meeting

Section 460 Asphalt Tack Coat Etnyre Spray Bar Nozzles

Ref.	Part No.	Description	Application Gallons Per Square Yard	Application (Metric) Liters Per Square Meter	US Flow Gallons Per Minute Per Foot
 1	3353788	V Slot Tack Nozzle	.0520	.2391	3.0 to 4.5
→ 2	3351008	S36-4 V Slot	1035	.45 - 1.58	4.0 to 7.5
3	3351009	S36-5 V Slot	.1845	.81 - 2.04	7.0 to 10.0
4	3352368	Multi-Material V Slot	.1540	.68 - 1.81	6.0 to 9.0
5	3351015	3/32" Coin Slot	.1540	.68 - 1.81	6.0 to 9.0
6	3352204	Multi-Material V Slot	.3595	1.58 - 4.30	12.0 to 21.0
7	3352205	Multi-Material V Slot	.2055	.91 - 2.49	7.5 to 12.0
8	3352210	End Nozzle (3352205)	.2055	.91 - 2.49	7.5 to 12.0
9	3351014	3/16" Coin Slot	.3595	1.58 - 4.30	12.0 to 21.0
10	3351010	1/4" Coin Slot	.40 - 1.10	1.81 - 4.98	15.0 to 24.0

Application Rate Calculation for TACK or NTT/CNTT Emulsion

Example Calculation:

Required Tack coat = **0.04 gal/sq. yd.** for *Residue* CNTT **0.67% Asphalt Residue** (i.e., **asphalt content** from Bill of Lading) *1 gal of CNTT* = 2/3 asphalt (67%) and 1/3 water (33%)

To determine the application rate, divide the required residue by asphalt content: AR (Application Rate) = required residue ÷ asphalt content as a decimal

0.04 ÷ 0.67 = 0.059 (0.06) gal/sq. yd. of emulsion *application rate* Check: 0.06 X 0.67 = 0.04 residue

Note: Asphalt content must be obtained from the Bill of Lading

PennDOT Surface Prep Training Module • WATCH THE VIDEO

Section 483 Polymer-Modified Emulsified Asphalt Paving System (Micro-Surfacing)

Section 483 Micro-Surfacing

- Work
 - construction of a polymer modified emulsified asphalt paving system commonly known as micro-surfacing, to fill ruts and/or resurface existing pavements.

• Three mix types of micro-surfacing:

- Type A. Used to seal cracks, fill voids and shallow ruts (<1/2 inch) & provide a scratch course or surface seal.
- Type B. Used to fill moderate ruts (1/2 to 1¼ inch) & provide a scratch course, a leveling course, a seal coat, or surface course
- Type Rut fill (RF). Used to fill deep ruts (up to 2 inch) in a single pass

Note: Type A and Type B can use a double application when specified, to meet total design pounds per square yard for surface courses.

Section 483 Micro-Surfacing

Section 483 Micro-Surfacing

- Construction
 - (f) Conditioning of Existing Surface. Section 409.3(g)1 & as follows:
 - Clean surface immediately before placing material
 - Remove all pavement markings & legends
 - For existing concrete surfaces, apply tack coat (Section 460).
 - Do not apply tack coat on existing asphalt surfaces
 - Apply water to dampen entire surface immediately before placing mixture

Remove Pavement Markings

Micro-surfacing General Requirements

If mix is NOT set up within one hour, the Dept. representative shall issue a warning to the contractor who may proceed with adjustments to ensure the one hour set up. If the material is not set up in 1 hour and 20 minutes, stop the application and remove and replace the failed material.

Section 483 Micro-surfacing

• Applied as a Mixture

• Lower Cost Compared to Overlay

• Relatively Long Service Life (4 to 7 yrs.)

• Polymers & Other Additives

 Specialized Equipment Needed

Micro-surfacing

Purpose:

- Improve surface friction
- Fill ruts/minor surface irregularities
- Seal pavement surface

• Designed to be open to traffic in 1 hour

Section 489

Ultra Thin Bonded Wearing Course (UTWC)

- Plant mixed UTWC
- Do not apply from Nov. 1 to Mar. 31 if binder is PG 64S-22
- Do not apply from Oct. 15 to Mar. 31 if binder is PG 64E-22
- Do not place if surface wet or air or surface temperature is **below 50°F** Paver with built-in spray bar, *UTWCEM* applied within 5 seconds of *UTWC*
- Roll without vibration at 185°F or greater (vibes may be used on joint)
- May use pneumatic tire roller
- Cracks sealed at least 24 hours prior

UTWCEM: Polymer modified emulsified asphalt membrane for UTWC

Section 489 Ultra Thin Bonded Wearing Course (UTWC)

Туре	NMAS	Placement Rates (pounds per square yard)
А	6.3 mm (1/4 inch)	45 to 65
В	9.5 mm (3/8 inch)	55 to 80
С	12.5 mm (1/2 inch)	60 to 85

Section 489 Ultra Thin Bonded Wearing Course

F

Section 489 Ultra Thin Bonded Wearing Course

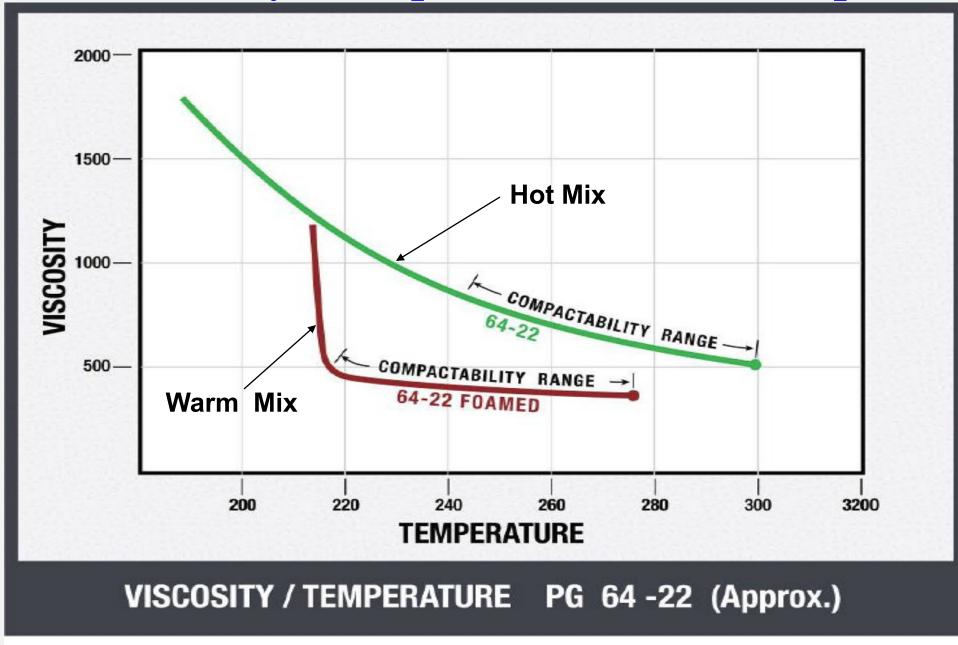
Section 491

Milling of Asphalt Pavement Surface

- Equipment must have automatic grade and slope control.
- Finished surface must conform to requirements of Section 413.3(1)
- Maintain milled surface free of all loose material and dust
- Traffic not allowed on milled surface for more than 6 calendar days
- Place first overlay within 7 calendar days from start of milling
- Work stoppage caused by Department, utilities, and weather delays will not count towards the 7 calendar days
- If first course of overlay not placed the same day milling is done, take all required safety measured as specified in Section 491.
- Milled material may be retained by the Contractor or the Department as specified in the contract.

Warm Mix Technologies

Warm Mix Asphalt


• A generic term for various technologies allowing asphalt paving materials to be produced and placed at lower temperatures.

Viscosity /Temperature Relationship

F

What are WMA Technologies?

Broken down into 3 classes:

-Foaming Processes (Water)

-Chemical Additives (Emulsions)

-Organic (Wax)

Organic Additives

- May be liquid or pellets
- May be pre-blended or added at plant to liquid binder
- May be introduced at the mixing drum
- Usually minor plant modifications to batch or drum plant.

Chemical Additives or Surfactants

• May be added at refinery or WMA plant directly to liquid asphalt.

• Can be teamed with foaming process

• Usually minor, if any, plant modifications required.

Foaming Process

• Water and perhaps other additives

=

- Water may be contained in the additive
- May be injected into supply line or added to drum or pug mill
- Plant modification involves installation of additional equipment
- 1 quart of water/ ton of mix (approx.)

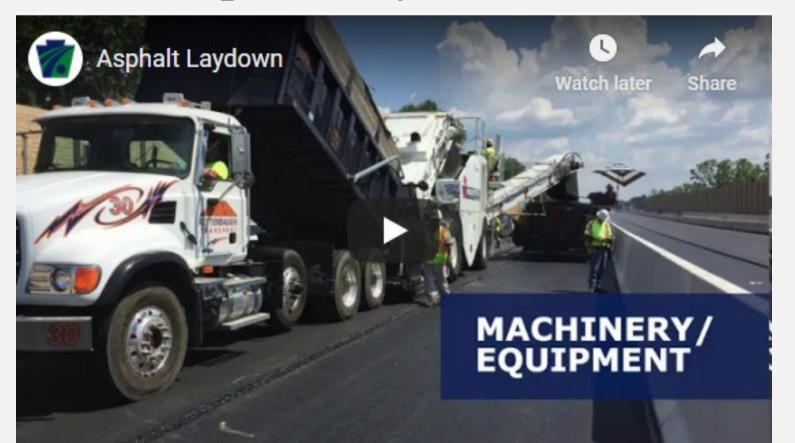
Safety Edge Requirements From FHWA

- Affects both Binder and wearing courses >1 $\frac{1}{2}$ inches
- Requires extrusion device at edge of pave (not just a strike-off)
- Incidental to course being laid
- 26-40 degree increase in angle from adjacent pavement.
- May require additional pre work

Note:

Drawings for this are in handouts. This cannot be laid on organic material and will be used in conjunction with shoulder back-up.

Adjustable Safety Edge Device


Summary (Part 2)

- Discussed key elements of several Spec sections:
- 404 Evaluation of Asphalt Pavement Ride Quality and Payment of Incentive
- **405** Evaluation of Asphalt Pavement Longitudinal Joints Density and Payment of Incentive/Disincentive
- **413** Superpave Mixture Design, Standard & RPS Construction (The Part on Discussion of Joints)
- 460 Asphalt Tack Coat
- 483 Polymer-Modified Emulsified Asphalt Paving System (Micro Surfacing)
- **489** Ultra Thin Bonded Wearing Course
- 491 Milling of Asphalt Pavement Surface

Recap of Asphalt Construction WATCH PAPA/PENNDOT VIDEO

Asphalt Laydown

Pennsylvania Test Methods (PTMs) for Field Technicians

What you need to know... Which Pennsylvania Test Methods apply to the field?

• The P.T.M.'s in the asphalt paving operations

• The purpose of each of these important test methods

Table of Contents - May 2018				
TEST TITLE	PTM <u>NO.</u>	REVISION DATE		
Probability Sampling	1	October 2013		
Treatment of Extreme Values	4	October 2013		
Evaluating Testing Repeatability	5	October 2013		
Determination of Percent Within Limits (PWL) for Construction Aggregate	6	October 2013		
Amount of Neteria Cineralian 75 per No. 200 Sieve Aggreente The Moisture Pensity Clations T Sieves (Long 5.5-Ib Rammer and a 12-such Drop)	2 100 106	Octob 2013 Octob 2017		
Determining Slake Durability of Rocks by the Jar Slake Test	122	May 2018		
Sample Preparation of Finnancial for Mechanally Stabilized Earth (MSE) Retaining Wind Structure Evaluation of Potential Emansion on ten Slat	127 130	October 2013 January 2016		
Determination of Coefficient of Uniformity	149	October 2013		
Field Sampling of Coated Films for Laboratory Analysis of Toxic Metal Content	200	October 2013		
Weight Per Liter of Paint	201	October 2013		
Patch Test for Assessing Coating Compatibility	207	October 2013		
Sampling and Testing Treated Wood Products	210	October 2013		
Cloud Point of Diesel Fuel	211	October 2013		
Determining Cell Seam Peel Strength and Spacing and Cell Depth of Geocell	301	May 2018		
Sponge Elastomers Low Temperature Brittleness	305	October 2013		

DENNEVI VANIA TEST METHODS (DTM)S

P.T.M.'s for Field Technicians

- **PTM 001:** Probability Sampling
- **PTM 402:** Determining In-Place Density Using Nuclear Gauges
- **PTM 403:** Determining In-Place Density Using Electrical Impedance Measurement Methods
- **PTM 428:** Measuring Pavement Profile Using a Light-Weight Profiler
- **PTM 729:** Sampling Roadway Asphalt Concrete
- **PTM 737:** Measuring Thickness of Asphalt Concrete Courses

P.T.M.'s for Field Technicians

- **PTM 746:** Sampling Asphalt Paving Mixtures
- **PTM 747:** Determination of Distributor Application Rate in the Field
- **PTM 751:** Measuring Surface Macrotexture Depth Using a Volumetric Technique & Determining Pattern Segregation

Laboratory Tests (PTMs for Plant Technicians):

- **PTM 715/716:** Determination of Bulk Specific Gravity of Compacted Asphalt Mixtures
- AASHTO T 209: Maximum Specific Gravity of Asphalt Mixtures (Vacuum Method)

PTM 1 Probability Sampling

PTM #1: Probability Sampling

• Selecting samples using probability sampling techniques

• Selecting all Department samples in an unbiased manner, based entirely on chance

• Samples divided into Lots and Sublots

Random Number Table

	X	Y
1.	0.29	R 0.66
2.	0.74	R 0.49
3.	0.89	L 0.79
4.	0.60	R 0.39
5.	0.88	R 0.31
	•	•
	•	•

Procedure:

- Determine lot size and number of sublots per lot from the specifications.
- Select a set of consecutive numbers from random number table--one for each sublot.
- For roadway sampling, values in X and Y columns give coordinates of sample.

7

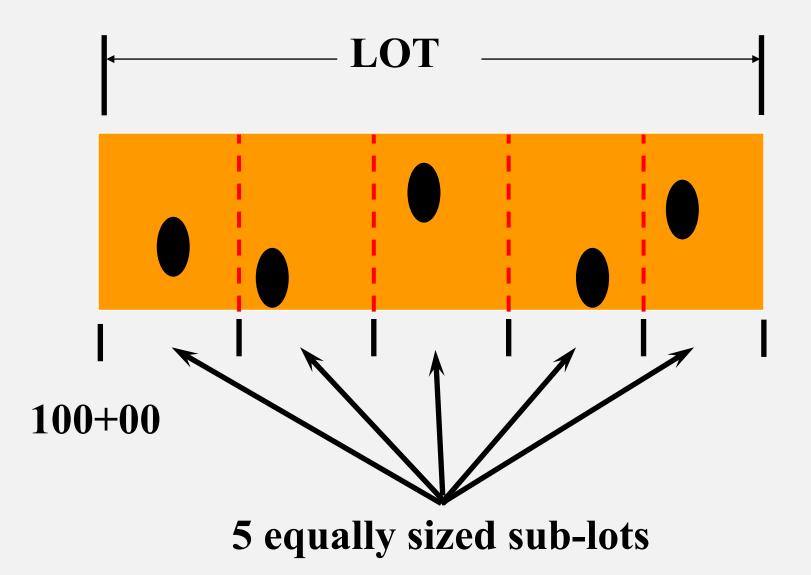
Random Number Table Y times W (width of paving) = 0.79 x W X Y 1. 0.29 **R** 0.66 **R** 0.49 0.742. 0.89 L 0.79 3. R 0.39 0.60 4. 0.88 **R** 0.31 5. *R or L indicates measurement from right or left edge of paved lane

X times L (Length of sublot) = 0.89 x L

8

Determining Sample Location

F


Length or "X" value

Offset or "Y" value

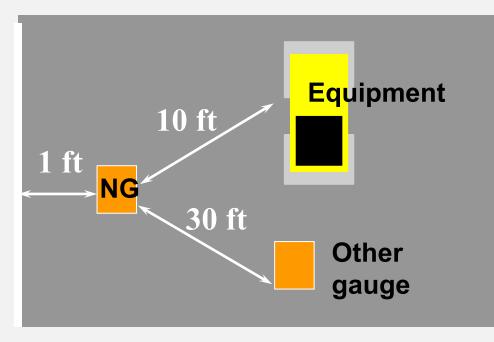
Example: RPS Lot (Box Sample)

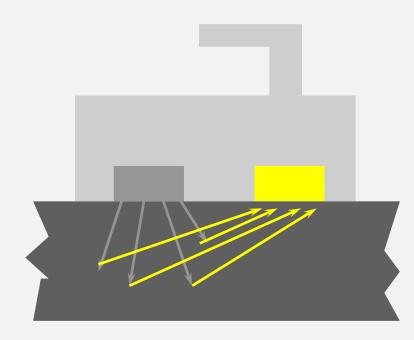
PTM 402 Determine In-Place Density by Use of Nuclear Gauges

and

PTM 403

Determine In-Place Density Using Electrical Impedance Measurement Methods

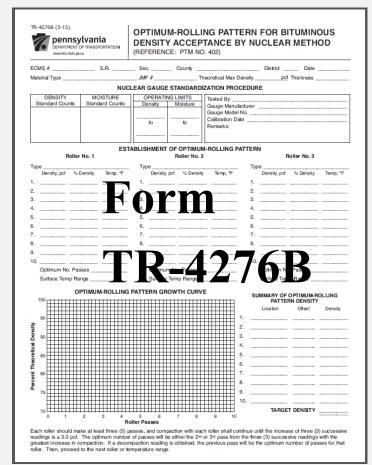


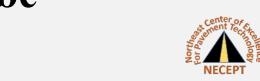

PTM #402:

In-Place Density by Use of Nuclear Gauges

- Nuclear Density Gauge
- Standardization
- Location

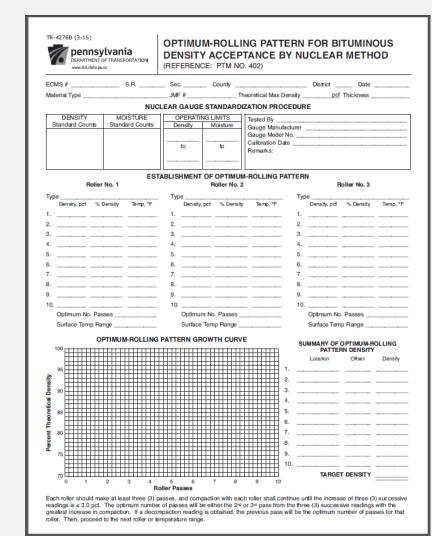
F





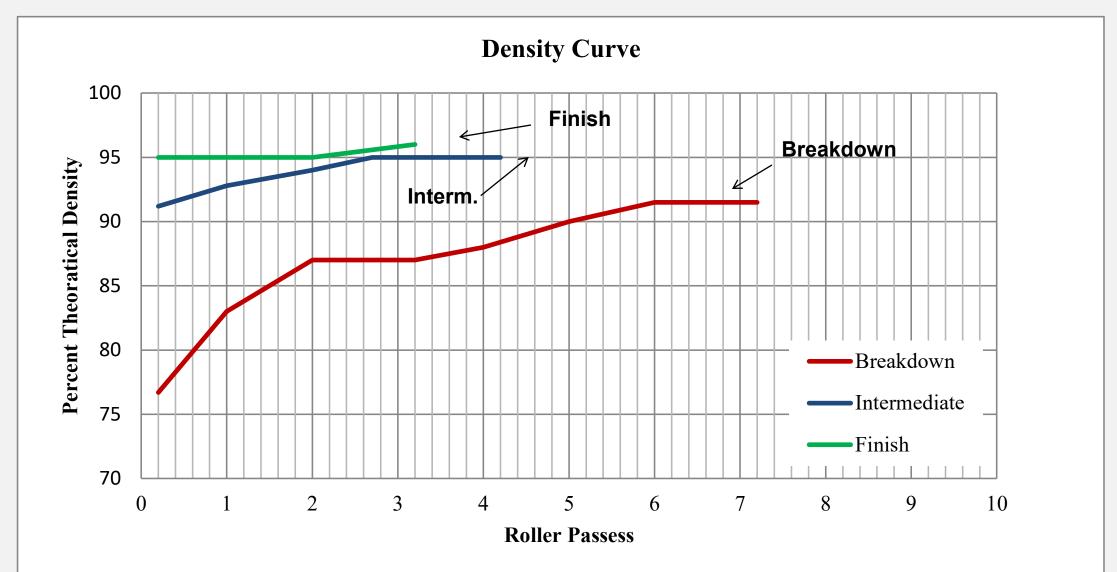
PTM #402: In-Place Density by use of a Nuclear Gauge

- Test Site Preparation
- Standard count daily

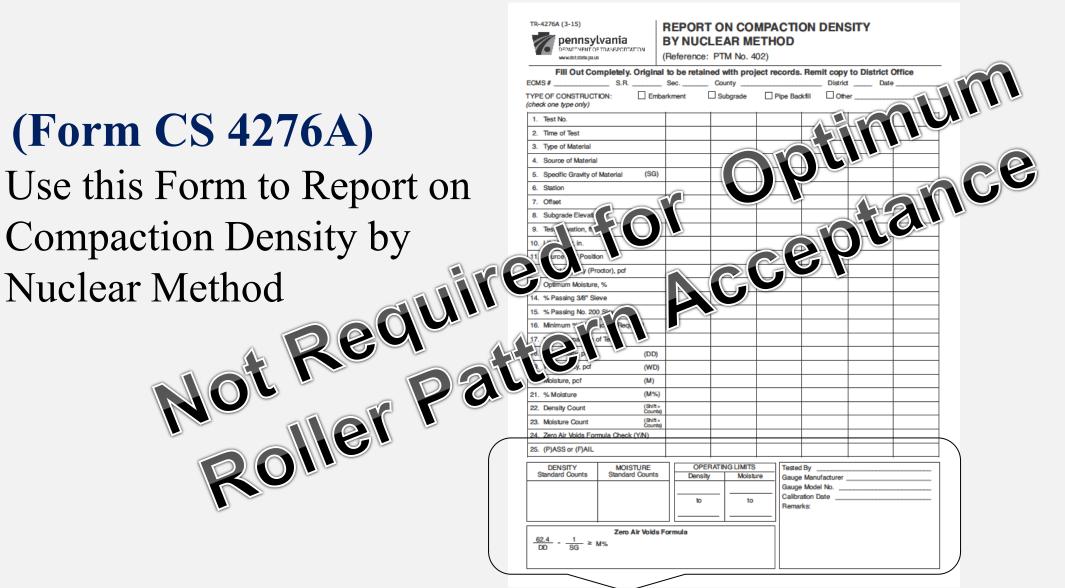


• Operator must be licensed & gauge must be type approved by PennDOT

PTM #402: In-Place Density by Use of Nuclear Gauges


(Form CS 4276B)

Use this Form for Establishment of Optimum Rolling Pattern



Establish Rolling Pattern

PTM #402: In-Place Density by Use of Nuclear Gauges

PTM #403:

In-Place Density Using Electrical Impedance Measurement

- Rapid non-destructive technique
- PennDOT approved instrument

- Calibration
- Test Site Preparation

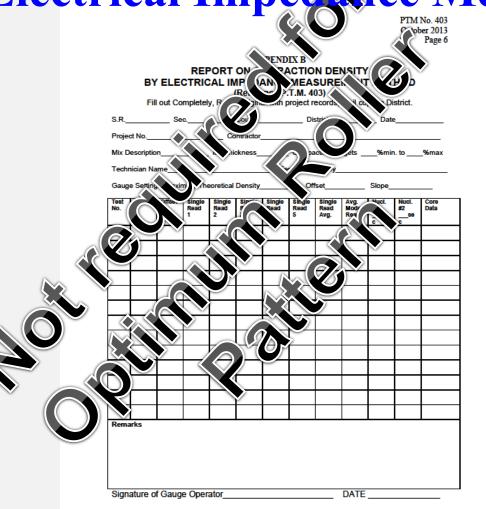
PTM #403:

In-Place Density Using Electrical Impedance Measurement

(Form CS 4276C)

Use this form to record data

DEPARTMENT OF TRANSPORTATION www.dot.state.pa.us	(Reference: PTM No. 403)		
ECMS#S.R.	Sec County	District	Date
Material Type	JMF # Theoretic	al Max Density	pcf Thickness
ELEC	RICAL IMPEDANCE GAUGE CALIBR	ATION PROCEDURE	
Gauge Operator	Manufacturer	Mo	del No
Screed Density = Estimated Screed D	nsity (As Decimal) × Theoretic	al Max Density	=
Reading 1 Reading 2 R	ading 3 Reading 4 Reading 5 To	otal Average	Screed Off Density Val
	++=		· =
Roller No. 1	STABLISHMENT OF OPTIMUM-ROLI Roller No. 2		Roller No. 3
Type	Type	Type	Noter No. 3
Density, pcf % Density Temp,			f % Density Temp,
1			
2			
3	3		
5.	5		
6	6		
7	7	7	
8			
9			
Optimum No. Passes			No. Passes
Surface Temp Range			mp Range
OPTIMUM-ROLL	NG PATTERN GROWTH CURVE		
100			F OPTIMUM-ROLLING
95		Location	Offset Densit
Image:		1	
ğ 90		3.	
8		4.	
85		5	
<u>۴</u>		++++	
Percent Theoretical Density		++++	
		8	
75		9	
70			ET DENSITY


Each roller should make at least three (3) passes, and compaction with each roller shall continue until the increase of three (3) successive readings is \leq 3.0 pct. The optimum number of passes will be either the 2^{rd} or 3^{rd} pass from the three (3) successive readings with the greatest increase in compaction. If a decompaction reading is obtained, the previous pass will be the optimum number of passes for that roller. Then, proceed to the next roller or temperature range.

PTM #403: In-Place Density Using Electrical Impedance Measurement

(Appendix B of PTM 403)

Use this form to report the results

19

Optimum Roller Pattern

• The intent is to achieve the maximum density possible under existing conditions, material characteristics, ambient temperature and roller capabilities.

3 successive passes that do NOT increase density by
 3 lbs./cu. ft. indicate further rolling is ineffective at
 that temperature with that machine

Optimum Roller Pattern

• Electrical Impedance or Nuclear gauge must be calibrated DAILY.

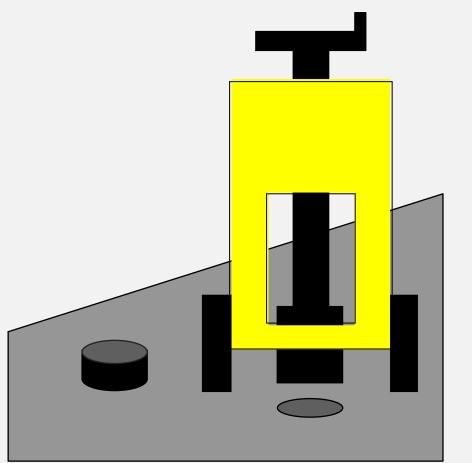
• Readings must be taken from *same location after each pass* of the roller.

• Each roller must make AT LEAST 3 passes.

• Record results of each pass.

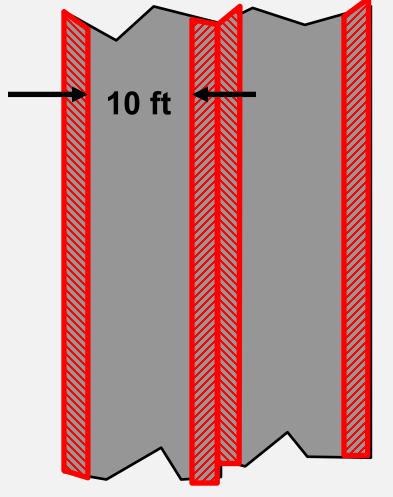
Optimum Roller Pattern

- If the density increase for 3 successive passes is less than 3 lbs. /cu. ft., the optimum pass will be the one with the greatest increase of the 3 passes.
- No readings required until after 2nd pass of pneumatic tire roller.
- Record results on proper form, document ten random readings and average density.
- Should be performed **DAILY**, and may be required more than once per day.

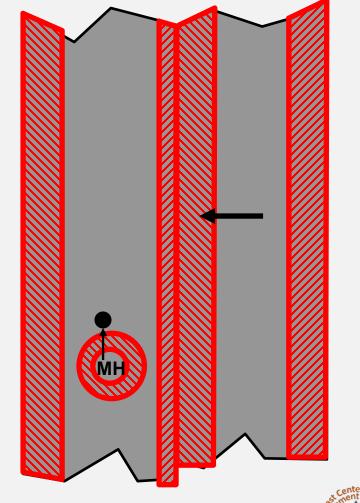


PTM 729

- Contains information on
 - equipment
 - selection of sample locations, (both roadway and longitudinal joint)
 - procedures
 - packaging and identification
 - and examples



- Testable width will equal the nominal paving width less one foot from each supported edge and each unsupported edge
- Example: 12-foot paving lane: 12 ft. -1 ft. -1 ft. = 10 ft.


10 ft. is the sampling width to be used with random number table.

• Defines **non-testable areas** as one foot from the edge of obstructions such as manholes, inlets, and utility valve covers.

• If sample location falls within a nontestable area, adjust location longitudinally in direction of paving to just outside the non-testable area.

PTM #729:

Sampling Roadway Asphalt Concrete

• Equipment:

- Powered Core drill, water cooled, equipped to core samples
- Diamond drill bits of 6" size
- Suitably sized boxes
- A rigid plate or suitable container to hold sample without distortion after removal (Concrete cylinder molds)
- Masking tape
- Marking pencil or lumber crayon

• Incidental materials and equipment

• Hand-held core sample extraction tool capable of grasping and removing the core sample without damage to the core sample

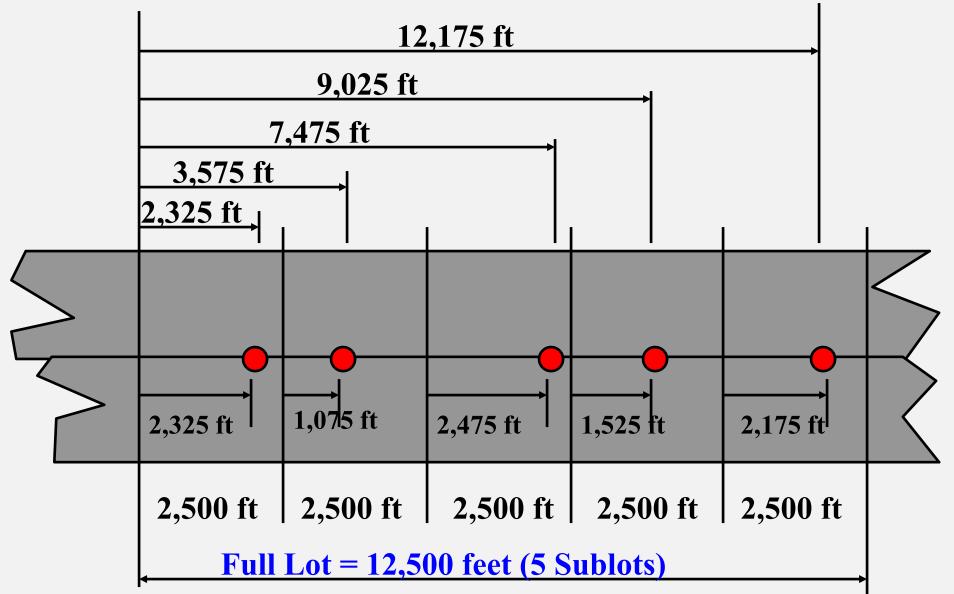
- Random sampling using PTM #1 with one sample from each sublot
- Density samples to be cross referenced to corresponding loose mix acceptance (box) samples on Form TR-477.
- Place increment bar code sticker from form TR-447 on outside container.
- Secure cored samples with masking tape.
- Store in safe, cool place and transport in timely manner.

- PTM Appendix provides examples for locating samples
 - Example 1: Location adjustment for edges
 - Example 2: Location adjustment for obstructions

PTM #729: Sampling Roadway Asphalt Concrete

Selection of Longitudinal Joint Incentive/Disincentive Samples

- Samples by random sampling using PTM #1 Random Numbers, X value only
- Lots determined as paving progresses
- Full lot = 12,500 linear feet
- 5 sublots of **2,500** feet per lot
- One sample from each sublot.



PTM #729 Locating Longitudinal Joint Cores

	X	Y	Linear Feet by Sublot	Total Lot LF
47	0.93	N/A	$0.93 ext{ x } 2,500 ext{ ft} = 2325$	2,325
48	0.43	N/A	0.43 x 2,500 ft = 1075	3,575
49	0.99	N/A	0.99 x 2,500 ft = 2475	7,475
50	0.61	N/A	0.61 x 2,500 ft = 1525	9,025
51	0.87	N/A	0.87 x 2,500 ft = 2175	12,175

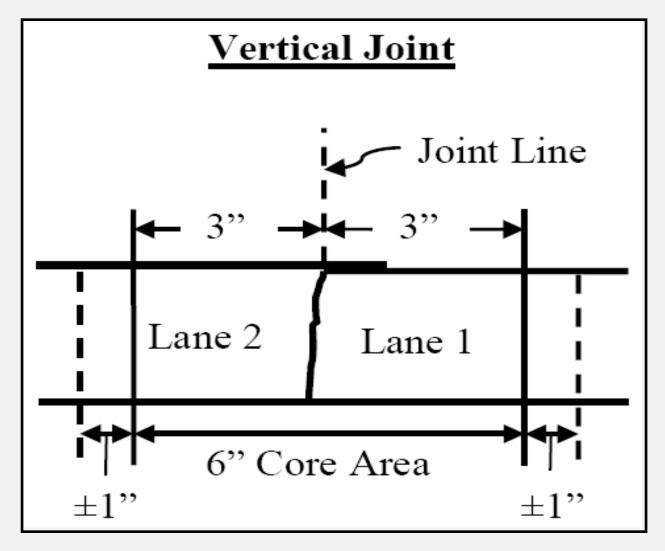
PTM #729 Locating Longitudinal Joint Cores

PTM #729 Locating Longitudinal Joint Cores Example from PTM Appendix – Example No. 3

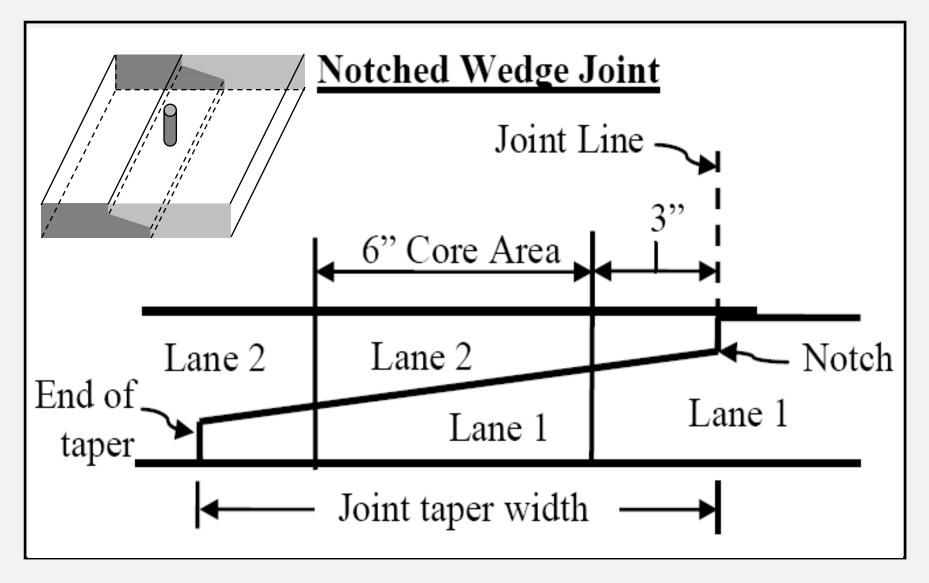
Sampling Sequence for LOT (12,500 linear feet)						
Sublot 1	2,325	=	Station 23+25			
Sublot 2	2,500 + 1,075	=	Station 35+75			
Sublot 3	5,000 + 2,475	=	Station 74+75			
Sublot 4	7,500 + 1,525	=	Station 90+25			
Sublot 5	10,000 + 2,175	=	Station 121+75			

PTM #729 Location of Longitudinal Joint Cores

- Length of final lot is adjusted to ensure final lot has between 3 to 7 sublots (See Example #3 in PTM Appendix)
- For final sublot, use a length of 2,500 feet and multiply by the x value of the random number.
- If sample falls beyond actual length of joint, sublot not counted and no sample taken.
- If sample falls within actual length of joint, sample taken and sublot added to final lot.


PTM #729 Location of Longitudinal Joint Cores

- Location of cores on joint
 - With vertical joints, cores centered on surface joint line
 - Center of core to be within 1 inch of joint line
 - With notch wedge joints, cores centered 6 inches or half the wedge width of the joint taper away from the joint line in direction of wedge
 - If G_{mm} of each lane differs by **more than 0.050**, ensure half of core is from each lane.
 - If not, adjust lateral location for replacement core **within 12 inches** longitudinally.


PTM #729

Location of Longitudinal Joint Cores

PTM #729 Location of Longitudinal Joint Cores

Using TR-447 for Longitudinal Joint Cores

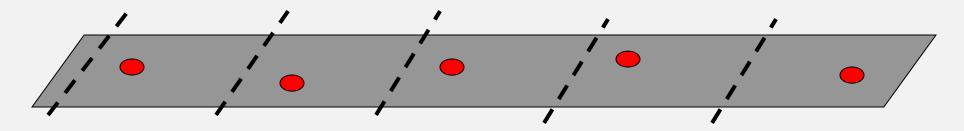
• Cores taken from same lot with same JMF packaged and recorded on the same TR-447

• Cores from Different JMF's on separate TR-447

• Cores from Paving Break > 5 days on Separate TR-447

PTM #737:

Measuring Thickness Of Asphalt Concrete Courses

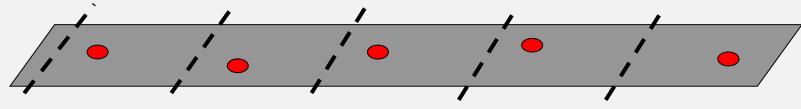

- Section 413.3(m) requires inspector to measure depth of cores
- <u>Minimum</u> of 4 measurements 90° apart and averaged.
- Depth of course recorded to nearest 1/8 inch.

Note: Department representative and contractor CFT should be present when cores are measured. If the bottom is irregular, more than 4 measurements may be averaged.

readings to the nearest 1/16 in.

Location of samples determined as described

in PTM 1: Probability Sampling


- Defines normal lot as 2,500 tons with 5 sublots of 500 tons.
- Defines sampling of projects with less than 2,500 tons total

> 500 tons & < 2,500tons: total quantity divided into 5 sublots

 \leq 500 tons: total quantity divided into 3 sublots

Acceptance Sampling on the Roadway

- One sample from each sublot using PTM #1
- Equipment:
 - Flat-bottom, high sided scoop
 - Boxes approximately 3 ³/₄" x 4 ³/₄" x 9 ¹/₂" (approximately 8 lbs of material)
 - Putty knife for scraping INSIDE of scoop
 - Incidental materials & equipment

Acceptance Sampling on the Roadway

• Samples taken from uncompacted mix directly behind the paver

• Each sample has a Form TR-447 for proper ID and info.

• Proper # increment barcode sticker on outside box

PTM #746: Sampling Asphalt Paving Material

NOT the outside of scoop

Acceptance Sampling on the Roadway

- Sampling scoop should pass completely through entire depth of material lift, transferring material to box, scraping any remaining fines from **INSIDE** scoop.
- PTM Appendix provides examples for locating samples
 - Example 1: Based on tonnage addresses procedure with MTV
 - Example 2: Based on square yards

PTM also includes:

Ę

• Sampling at the production plant under a quality control program with appropriate illustrative example

• Quality assurance sampling from hauling units with appropriate illustrative example

PTM 746

• Contains new information on selection of sample locations, equipment, procedures, identification and delivery, and illustrative examples for both plant and field.

NOTE: Samples taken at a producer by use of time intervals will not directly correlate to lot/ sublot designations

PTM 746

• For large NMAS mixes, contractor may obtain larger size samples and then reduce in size. Below is the language in PTM 746.

Section 5.11: for 3/4" (19 mm) and larger NMAS mixtures, a sample larger than is required in section 4.1 may be obtained and placed on a mixing board, thoroughly mixed, formed into a flat pile and carefully quartered to provide a representative sample of the required size. Scrape the inside of the scoop at each transfer point to incorporate any fines sticking to the inside of the scoop.

PTM 747 Determination of Distributor Application Rate in the Field

PTM #747:

Determination of Distributor Application Rate in the Field

- Calibration of distributor prior to test required
- Equipment
 - 48" Carpenter's level
 - Dipstick for tank
 - Manufacturer's certificate of calibration
- Application rate of higher temperature materials determined by correcting temperature using Bulletin 25 conversion chart

PTM #747:

Determination of Distributor Application Rate in the Field

• Procedure

- Level tank with level on top of manhole
- Use dipstick to measure material level in tank, calculate gallons from calibration table
- Select test strip length according to Table 1

Table 1. Length of Test Strip				
App. Rate, gal/sq.yd.	Length of Test Strip, feet			
Less than or = 0.01	1,000			
More than 0.01	500			

Note: Dipstick should agree with gauge and be marked with serial number of distributor unit Wheel or infra-red unit on truck should agree with measured distance

Application Rate Calculation for 60% Residue TACK or NTT/CNTT

Application Rate: (AR)

AR= required residue ÷ asphalt content as a decimal

Assume 0.03 gallons/sq. yd. is the required RESIDUE. AR= $0.03 \div 0.60$ (60%) OR AR = 0.05 gallons/sq. yd.

Check: **0.05 applied × 0.60** asphalt content = **0.03 gallons of residue per square yard**

PTM #747:

Determination of Distributor Application Rate & Yield in the Field

• Procedure (continued)

F

- Apply material to test strip
- Level tank again and measure level of material with dipstick
- Calculate application rate
- Multiply length by width and divide by 9 to calculate square yards.
- Divide gallons placed by square yards covered to determine Application rate.
- Multiply Application rate by % of asphalt in tack to determine yield

Segregated or Flushed Pavement

- Inspector notifies contractor that segregation or flushing is suspected.
- Contractor may elect to proceed at their own risk from that point while trying to rectify the problem.
- **PTM 751** will be performed to evaluate the condition.

PTM #751:

Measuring Surface Macrotexture Depth Using A Volumetric Technique & Determining Pattern Segregation

- Also known as Hockey Puck Test
- Used to determine degree of segregation or flushing
- Measures voids in pavement surface and indicates segregation or gradation change

PTM 751 PROCEDURES

- Areas must be clean and dry with no loose debris.
- Test will be performed in three suspect and three acceptable locations.
- A measured quantity of material is applied to mat surface and spread to largest possible diameter circle.
- For each location, diameter will be determined and halved to get the radius.
- Average radius will be found for the three suspect locations.
- Average radius will be found for the three acceptable locations.

PTM 751 PROCEDURES

=

- Use Table 1 on page 7 of PTM 751 to find the texture depth.
 - Use average radius of the suspect area to obtain the texture depth for the suspect area.
 - Use average radius of the acceptable area to obtain the texture depth for the acceptable area.
- If average texture depth difference **exceeds 0.024 inches** the area is considered "**unacceptable pattern segregation**"

If Unacceptable Pattern Segregation Is Evident (via PTM 751)

- Stop Paving
- Department will evaluate segregation to determine corrective work
 - DO NOT resume paving until Department reviews corrective actions & authorizes paving to continue
- Test section then placed, < 200 tons
- Resume normal paving after successful test section

Evaluating Segregated Area

- Evaluating Segregation [PennDOT Specs Section 413.3(h)3.c]:
 - Take 6-inch-diameter Cores.
 - Remove & Replace Segregated Areas if sum of any 2 sieves vary 20% or more from the JMF or core Density is less then 90%.
 - Remove full lane width of segregated area plus 5 feet minimum beyond each end.

Summary

Reviewed Field Related Asphalt PTMs

- Probability Sampling
- Sampling loose material
- In-Place Density Measurement Techniques
- Pavement Profile Measurement
- Core Thickness Measurement
- Distributor Application Rate
- Measuring Surface Texture to identify pattern segregation

Asphalt Construction Program Certified Asphalt Field Technician

Determining Lots/Sublots and Sample Locations

Determining Lots & Sublots, and Sampling Locations

Contents:

- Table D (Section 413.3(h)2.a Lots & Sublots)
- PTM 1, Table 1, Random Number Table
- Problem 1 Parts A, B, C, D
- Problem 2 Parts A,B
- Problem 3
- Problem 4

Three Major Rules

1 2500 TON OR MORE OF ANY JMF PER PROJECT: DIVIDE BY 500 TONS AND ROUND UP TO DETERMINE THE POSSIBLE NUMBER OF SUBLOTS

2 >500 TON BUT < 2500 DIVIDE INTO 5 EQUAL SUBLOTS

3 500 TON OR LESS DIVIDE INTO 3 EQUAL SUBLOTS

413.3(h)2.a Lots and Sublots: Table D

Re-adjustment of Lot Size & Associated Number of Sublots

Remaining Quantity* Following Last Full Lot	Action
Less than 500 tons <u>without</u> a combination of one mixture acceptance sample and one core	Quantity combined with previous lot, (n=5)
Less than 500 tons <u>with</u> a combination of one mixture acceptance sample and one core	One new sublot defined & quantity combined with previous lot, (n=6)
500 tons to less than 1000 tons <u>without</u> a combination of two mixture acceptance samples and two cores	One new sublot defined & quantity combined with previous lot, (n=6)
500 tons to less than 1000 tons <u>with</u> a combination of two mixture acceptance samples and two cores	Two new sublots defined & quantity combined with previous lot, (n=7)
1000 tons to less than 1500 tons <u>without</u> a combination of three mixture acceptance samples and three cores	Two new sublots defined & quantity combined with previous lot, (n=7)
1000 tons to less than 1500 tons with a combination ofthree mixture acceptance samples and three cores	New lot defined, (n=3)

Remaining Quantity* Following Last Full Lot	Action
1500 tons to less than 2000 tons <u>without</u> a combination of four mixture acceptance samples and four cores	New lot defined, (n=3)
1500 tons to less than 2000 tons <u>with</u> a combination of four mixture acceptance samples and four cores	New lot defined, (n=4)
2000 tons to less than 2500 tons <u>without</u> a combination of five mixture acceptance samples and five cores	New lot defined, (n=4)
2000 tons to less than 2500 tons <u>with</u> a combination of five mixture acceptance samples and five cores	New lot defined, (n=5)

PennDOT TABLE I <u>RANDOM POSITIONS IN DECIMAL FRACTIONS (2 PLACES)</u>

	Х	Y		Х	Y		Х	Y
1.	0.29	R 0.66	34.	0.61	L 0.87	67.	0.93	R 0.17
2.	0.74	R 0.49	35.	0.76	R 0.16	68.	0.40	R 0.50
3.	0.89	L 0.79	36.	0.87	L 0.10	69.	0.44	R 0.15
4.	0.60	R 0.39	37.	0.41	L 0.10	70.	0.03	L 0.60
5.	0.88	R 0.31	38.	0.28	R 0.23	71.	0.19	L 0.37
6.	0.72	L 0.54	39.	0.22	L 0.18	72.	0.92	L 0.45
7.	0.12	R 0.08	40.	0.21	L 0.94	73.	0.20	L 0.85
8.	0.09	L 0.94	41.	0.27	L 0.52	74.	0.05	R 0.56
9.	0.62	L 0.11	42.	0.39	R 0.91	75.	0.46	R 0.58
10.	0.71	R 0.59	43.	0.57	L 0.10	76.	0.43	R 0.91
11.	0.36	L 0.38	44.	0.82	L 0.12	77.	0.97	L 0.55
12.	0.57	R 0.49	45.	0.14	L 0.94	78.	0.06	R 0.51
13.	0.35	R 0.90	46.	0.50	R 0.58	79.	0.72	L 0.78
14.	0.69	L 0.63	47.	0.93	L 0.03	80.	0.95	L 0.36
15.	0.59	R 0.68	48.	0.43	L 0.29	81.	0.16	L 0.61
16.	0.06	L 0.03	49.	0.99	L 0.36	82.	0.29	R 0.47
17.	0.08	L 0.70	50.	0.61	R 0.25	83.	0.48	R 0.15

18.	0.67	L 0.68	51.	0.87	L 0.36	84.	0.73	R 0.64
19.	0.83	R 0.97	52.	0.34	L 0.19	85.	0.05	L 0.94
20.	0.54	R 0.58	53.	0.37	R 0.33	86.	0.43	L 0.05
21.	0.82	R 0.50	54.	0.97	L 0.79	87.	0.87	R 0.98
22.	0.66	R 0.73	55.	0.13	R 0.56	88.	0.37	L 0.71
23.	0.06	L 0.27	56.	0.85	R 0.64	89.	0.94	L 0.26
24.	0.03	L 0.13	57.	0.14	L 0.04	90.	0.57	L 0.63
25.	0.55	L 0.29	58.	0.99	R 0.74	91.	0.26	R 0.80
26.	0.64	L 0.77	59.	0.40	L 0.76	92.	0.01	L 0.79
27.	0.30	R 0.57	60.	0.37	L 0.09	93.	0.83	R 0.59
28.	0.51	R 0.67	61.	0.90	R 0.74	94.	0.71	L 0.21
29.	0.29	R 0.09	62.	0.09	L 0.70	95.	0.65	L 0.63
30.	0.63	R 0.82	63.	0.66	L 0.97	96.	0.65	L 0.87
31.	0.53	L 0.86	64.	0.89	L 0.55	97.	0.72	R 0.92
32.	0.99	R 0.22	65.	0.67	L 0.44	98.	0.85	L 0.78
33.	0.02	R 0.89	66.	0.02	R 0.65	99.	0.04	L 0.46
						100.	0.29	L 0.95

X = Decimal fraction of the total length measured along the road from the starting point.

Y = Decimal fraction measured across the road from either outside edge towards the centerline of the paved lane.

R = Indicates measurement from the right edge of the paved lane.

L = Indicates measurement from the left edge of the paved lane.

Job-Mix Formula

F

TR-448A (6-15)	JOB MIX FORM	ULA REPORT		pave 1	123	\$	SR25BC
	PennDOT Mix Des Year	sign Designatio Number	n	Design ES/ Aggregate Skid	-		o < 3 Million Non-Applicable
	2015	5220R		Mixure Final Aspl			PG6422
	2010	of the second			Asphalt Mix		HMA
pennsylvania	Supplier JMF/Design	Design Number (Optional)		Gradat	ion Classifi	cation	Coarse-Graded
DEPARTMENT OF TRANSPORTATION	•				nal Approva	al Date	
				JMF S	itatus	Ap	proved
Supplier Pave, I			anywhere	0.0			Mix Time
ECMS Number SR &	PO NoLine Item No	Plant Type)8 Spec lant 10		Dr	y(s) Wet(s)
Contractor		Location	~ .	10		!	5 35
Material Supplier	Material Code - Cla		Pro	duct Name	%	Spec.	%
HAP41A14	207 (Aggregate Fine			and A1	4.100	2.568	1.72
HAP41B14	207 (Aggregate Fine)) - B3	В	3 (W)	16.400	2.663	1.37
HAP41B14	203 (Aggregate) - A	467		467	17.400	2.724	0.89
HAP41B14	203 (Aggregate) - A			A57	36.100	2.710	1.33
HAP41B14	203 (Aggregate) - /			A8	7.300	2.698	1.27
NOBLT 14	17 (Hot Rap Design) -			RAP	15.000	2.740	0.00
UNRC0 15	1 (Asphalt Cement) - P			AC	3.700	1.031	
		JOB MIX FORM					
A.C. / Sieve Size A.C%			16 #8	#4 3/8"		/4" 1"	1 1/2"
Design Target 4.4	4.0 5 7	12 17	25	37 53	66 86	6 96	100
% Virgin A.C.	3.7	% Reclaimed A	.C. from RAP	0.70	Total % As	phalt (Pb)	4.4
Virgin A.C. PG Binder Gr	ade PG6422	% Reclaimed A	C from RAS		% Eff. Aspha	alt Binder	4.1
Virgin A.C. FO Dilider Of	ade F00422	in the originated in			in Entrapine		4.1
Virgin A.C. FO Dinder Or	44.20			0.40			4.1
	MI 20	X CHARACTER	RISTICS (GYRA	TORY)			10
Design ESAL Range	MI Mold Diameter # Gyrations (mm) at Ninitial	X CHARACTER # Gyrations at NDesign	RISTICS (GYRA # Gyrations at NMaximum	TORY) Voids in Minera	I Theoretic	cal Max.	Bulk Sp. Grav. of Mixture (Gmb)
Design ESAL Range 0.3 to < 3 Million	Mold Diameter # Gyrations (mm) at Ninitial 150 7	X CHARACTER # Gyrations at NDesign 75	RISTICS (GYRA # Gyrations at NMaximum 115	TORY) Voids in Minera Aggregate (VMA) 13.8	I Theoreti % Sp. Grav 2.5	cal Max. . (Gmm) 537	Bulk Sp. Grav. of Mixture (Gmb) 2.436
Design ESAL Range 0.3 to < 3 Million Bulk Sp. Grav. of	Mold Diameter # Gyrations (mm) at Ninitial 150 7 Mixture Mass % Air Voids	X CHARACTER # Gyrations at NDesign 75 \$ % Aid Voids	RISTICS (GYRA # Gyrations at NMaximum 115 % Air Voids	TORY) Voids in Minera Aggregate (VMA) 13.8 Voids filled with	I Theoreti % Sp. Grav 2.5 n Theoreti	cal Max. 7. (Gmm) 537 cal Max.	Bulk Sp. Grav. of Mixture (Gmb) 2.436 Bulk Density of
Design ESAL Range 0.3 to < 3 Million Bulk Sp. Grav. of Combined Aggr.(Gsb)	Mold Diameter (mm) # Gyrations at Ninitial 150 7 Mixture Mass to Compact (g) % Air Voids at Ninitial	X CHARACTER # Gyrations at NDesign 75 % Aid Voids at NDesign	RISTICS (GYRA # Gyrations at NMaximum 115 % Air Voids at NMaximum	TORY) Voids in Minera Aggregate (VMA) 13.8 Voids filled with Asphalt (VFA) 9	I Theoreti % Sp. Grav 2.5 Theoreti & Density	cal Max. 7. (Gmm) 537 cal Max. (Ibs/ft3)	Bulk Sp. Grav. of Mixture (Gmb) 2.436 Bulk Density of Mixture (Ibs/ft3)
Design ESAL Range 0.3 to < 3 Million Bulk Sp. Grav. of	Mold Diameter # Gyrations (mm) # Kinitial 150 7 Mixture Mass to Compact (g) % Air Voids at Ninitial 4,740.0 14.5	X CHARACTER # Gyrations at NDesign 75 % Aid Voids at NDesign 4.0	RISTICS (GYRA # Gyrations at NMaximum 115 % Air Voids at NMaximum 2.6	TORY) Voids in Minera Aggregate (VMA) 13.8 Voids filled with Asphalt (VFA) % 71.0	I Theoreti % Sp. Grav 2.5 Theoreti & Density	cal Max. 7. (Gmm) 537 cal Max.	Bulk Sp. Grav. of Mixture (Gmb) 2.436 Bulk Density of
Design ESAL Range 0.3 to < 3 Million Bulk Sp. Grav. of Combined Aggr.(Gsb) 2.701	Mold Diameter # Gyrations (mm) # Kinitial 150 7 Mixture Mass to Compact (g) % Air Voids at Ninitial 4,740.0 14.5	X CHARACTER # Gyrations at NDesign 75 % Aid Voids at NDesign 4.0 SPHALT CONT	RISTICS (GYRA # Gyrations at NMaximum 115 % Air Voids at NMaximum 2.6	TORY) Voids in Minera Aggregate (VMA) 13.8 Voids filled with Asphalt (VFA) % 71.0 FHOD	I Theoretin % Sp. Grav 2.5 Theoretin Density 15	cal Max. 7. (Gmm) 537 cal Max. (Ibs/ft3)	Bulk Sp. Grav. of Mixture (Gmb) 2.436 Bulk Density of Mixture (Ibs/ft3)
Design ESAL Range 0.3 to < 3 Million Bulk Sp. Grav. of Combined Aggr.(Gsb) 2.701	Mold Diameter (mm) # Gyrations at Ninitial 150 7 Mixture Mass to Compact (g) % Air Voids at Ninitial 4,740.0 14.5 A	X CHARACTER # Gyrations at NDesign 75 % Aid Voids at NDesign 4.0 SPHALT CONT lodel Furm	RISTICS (GYRA # Gyrations at NMaximum 115 % Air Voids at NMaximum 2.6 ENT TEST MET	TORY) Voids in Minera Aggregate (VMA) 13.8 Voids filled with Asphalt (VFA) % 71.0 FHOD	I Theoretin % Sp. Grav 2.5 Theoretin Density 15	cal Max. /. (Gmm) 537 cal Max. (Ibs/ft3) 7.9	Bulk Sp. Grav. of Mixture (Gmb) 2.436 Bulk Density of Mixture (Ibs/ft3) 151.6
Design ESAL Range 0.3 to < 3 Million Bulk Sp. Grav. of Combined Aggr.(Gsb) 2.701 A.C. Test Method	Mold Diameter # Gyrations (mm) at Ninitial 150 7 Mixture Mass % Air Voids to Compact (g) at Ninitial 4,740.0 14.5 A External Party Oven Make/M Thermolyne/NCAT AP-2	X CHARACTER # Gyrations at NDesign 75 % Aid Voids at NDesign 4.0 SPHALT CONT lodel Furm	RISTICS (GYRA # Gyrations at NMaximum 115 % Air Voids at NMaximum 2.6 ENT TEST ME bace Temp (°C) 538.0	TORY) Voids in Minera Aggregate (VMA) 13.8 Voids filled with Asphalt (VFA) 9 71.0 THOD Sample Size for 2,000.0	I Theoretin % Sp. Grav 2.5 Theoretin Density 15	cal Max. 7. (Gmm) 537 cal Max. (Ibs/ft3) 7.9 Asphalt	Bulk Sp. Grav. of Mixture (Gmb) 2.436 Bulk Density of Mixture (Ibs/ft3) 151.6 200 C.F.
Design ESAL Range 0.3 to < 3 Million Bulk Sp. Grav. of Combined Aggr.(Gsb) 2.701 A.C. Test Method	Mold Diameter # Gyrations (mm) at Ninitial 150 7 Mixture Mass % Air Voids to Compact (g) at Ninitial 4,740.0 14.5 A External Party Oven Make/M Thermolyne/NCAT AP-2	X CHARACTER # Gyrations at NDesign 75 % Aid Voids at NDesign 4.0 SPHALT CONT lodel Furm 0x MOISTURE SUS	RISTICS (GYRA # Gyrations at NMaximum 115 % Air Voids at NMaximum 2.6 ENT TEST MET tace Temp (°C) 538.0 CEPTIBILITY I	TORY) Voids in Minera Aggregate (VMA) 13.8 Voids filled with Asphalt (VFA) 9 71.0 THOD Sample Size for 2,000.0	I Theoreti % Sp. Grav 2.5 Theoreti 6 Density 15 or C.F.	cal Max. 7. (Gmm) 537 cal Max. (Ibs/ft3) 7.9 Asphalt 0.47	Bulk Sp. Grav. of Mixture (Gmb) 2.436 Bulk Density of Mixture (Ibs/ft3) 151.6 200 C.F.
Design ESAL Range 0.3 to < 3 Million Bulk Sp. Grav. of Combined Aggr.(Gsb) 2.701 A.C. Test Method PTM No. 757	Mold Diameter # Gyrations (mm) at Ninitial 150 7 Mixture Mass % Air Voids to Compact (g) at Ninitial 4,740.0 14.5 A External Party Oven Make/N Thermolyne/NCAT AP-2 Name	X CHARACTER # Gyrations at NDesign 75 % Aid Voids at NDesign 4.0 SPHALT CONT Nodel Furm 0x MOISTURE SUS Dry PSI Streng	RISTICS (GYRA # Gyrations at NMaximum 115 % Air Voids at NMaximum 2.6 ENT TEST MET ace Temp (°C) 538.0 GCEPTIBILITY I gth Wet PSI St	TORY) Voids in Minera Aggregate (VMA) 13.8 Voids filled with Asphalt (VFA) % 71.0 THOD Sample Size fo 2,000.0 DATA trength TSR Value	I Theoreti % Sp. Grav 2.5 Theoreti 6 Density 15 or C.F.	cal Max. 7. (Gmm) 537 cal Max. (Ibs/ft3) 7.9 Asphalt 0.47	Bulk Sp. Grav. of Mixture (Gmb) 2.436 Bulk Density of Mixture (Ibs/ft3) 151.6 200 C.F. 0.00
Design ESAL Range 0.3 to < 3 Million Bulk Sp. Grav. of Combined Aggr.(Gsb) 2.701 A.C. Test Method PTM No. 757 A.C. Supplier	Mold Diameter # Gyrations (mm) at Ninitial 150 7 Mixture Mass % Air Voids to Compact (g) at Ninitial 4,740.0 14.5 A External Party Oven Make/M Thermolyne/NCAT AP-2 Name Name COMBINE	X CHARACTER # Gyrations at NDesign 75 % Aid Voids at NDesign 4.0 SPHALT CONT lodel Furm 0x MOISTURE SUS	RISTICS (GYRA # Gyrations at NMaximum 115 % Air Voids at NMaximum 2.6 ENT TEST MET ace Temp (°C) 538.0 GCEPTIBILITY I gth Wet PSI St	TORY) Voids in Minera Aggregate (VMA) 13.8 Voids filled with Asphalt (VFA) % 71.0 THOD Sample Size fo 2,000.0 DATA trength TSR Value PROPERTIES	I Theoretia % Sp. Grav 2.5 Theoretia 6 Density 15 or C.F. 4 ue Date o	cal Max. . (Gmm) i37 cal Max. (Ibs/ft3) 7.9 Asphalt 0.47 of TSR _ E	Bulk Sp. Grav. of Mixture (Gmb) 2.436 Bulk Density of Mixture (Ibs/ft3) 151.6 200 C.F. 0.00 Date of Boil Test
Design ESAL Range 0.3 to < 3 Million Bulk Sp. Grav. of Combined Aggr.(Gsb) 2.701 A.C. Test Method PTM No. 757 A.C. Supplier	Mold Diameter # Gyrations (mm) # Winitial 150 7 Mixture Mass to Compact (g) at Ninitial 4,740.0 14.5 A External Party Oven Make/N Thermolyne/NCAT AP-2 Name Nome COMBINE AASHTO T 304	X CHARACTER # Gyrations at NDesign 75 % Aid Voids at NDesign 4.0 SPHALT CONT Nodel Furm 0x MOISTURE SUS Dry PSI Streng	RISTICS (GYRA # Gyrations at NMaximum 115 % Air Voids at NMaximum 2.6 ENT TEST MET lace Temp (°C) 538.0 SCEPTIBILITY I gth Wet PSI St	TORY) Voids in Minera Aggregate (VMA) 13.8 Voids filled with Asphalt (VFA) % 71.0 THOD Sample Size fo 2,000.0 DATA trength TSR Vali PROPERTIES	I Theoretia % Sp. Grav 2.5 Theoretia Density 15 or C.F. 2 ue Date o	cal Max. . (Gmm) 337 cal Max. (Ibs/ft3) 7.9 Asphalt 0.47 of TSR E	Bulk Sp. Grav. of Mixture (Gmb) 2.436 Bulk Density of Mixture (Ibs/ft3) 151.6 200 C.F. 0.00 Date of Boil Test
Design ESAL Range 0.3 to < 3 Million Bulk Sp. Grav. of Combined Aggr.(Gsb) 2.701 A.C. Test Method PTM No. 757 A.C. Supplier AASHTO T 176 Sand Fin	Mold Diameter # Gyrations (mm) # Kinitial 150 7 Mixture Mass % Air Voids to Compact (g) at Ninitial 4,740.0 14.5 A fitternal Party Oven Make/M Thermolyne/NCAT AP-2 Name Nome COMBINE AASHTO T 304 re Aggr. Angularity ASTI	X CHARACTER # Gyrations at NDesign 75 % Aid Voids at NDesign 4.0 SPHALT CONT lodel Furm 0x MOISTURE SUS Dry PSI Streng 105.7 D AGGREGATI	RISTICS (GYRA # Gyrations at NMaximum 115 % Air Voids at NMaximum 2.6 ENT TEST MET Iace Temp (°C) 538.0 GEPTIBILITY I gth Wet PSI Si FOO E CONSENSUS & Aggregate Ang	TORY) Voids in Minera Aggregate (VMA) 13.8 Voids filled with Asphalt (VFA) 9 71.0 THOD Sample Size fo 2,000.0 DATA trength TSR Vali PROPERTIES PROPERTIES	I Theoretia % Sp. Grav 2.5 Theoretia Density 15 or C.F. 2 ue Date o Theoretia STM D4791 ongated Part	cal Max. . (Gmm) 337 cal Max. (Ibs/ft3) 7.9 Asphalt 0.47 of TSR E 5/05	Bulk Sp. Grav. of Mixture (Gmb) 2.436 Bulk Density of Mixture (Ibs/ft3) 151.6 200 C.F. 0.00 Date of Boil Test
Design ESAL Range 0.3 to < 3 Million Bulk Sp. Grav. of Combined Aggr.(Gsb) 2.701 A.C. Test Method PTM No. 757 A.C. Supplier AASHTO T 176 Sand Fin	Mold Diameter # Gyrations (mm) # Kinitial 150 7 Mixture Mass % Air Voids to Compact (g) at Ninitial 4,740.0 14.5 A fitternal Party Oven Make/M Thermolyne/NCAT AP-2 Name Nome COMBINE AASHTO T 304 re Aggr. Angularity ASTI	X CHARACTER # Gyrations at NDesign 75 % Aid Voids at NDesign 4.0 SPHALT CONT lodel Furm 0x MOISTURE SUS Dry PSI Streng 105.7 D AGGREGATE	RISTICS (GYRA # Gyrations at NMaximum 115 % Air Voids at NMaximum 2.6 ENT TEST MET lace Temp (°C) 538.0 SCEPTIBILITY I gth Wet PSI St	TORY) Voids in Minera Aggregate (VMA) 13.8 Voids filled with Asphalt (VFA) 9 71.0 THOD Sample Size fo 2,000.0 DATA trength TSR Vali A 0.00 PROPERTIES PROPERTIES Aularity Flat / El ush 5:1	I Theoretia % Sp. Grav 2.5 Theoretia Density 15 or C.F. 2 ue Date o	cal Max. . (Gmm) 337 cal Max. (Ibs/ft3) 7.9 Asphalt 0.47 of TSR E 5/05	Bulk Sp. Grav. of Mixture (Gmb) 2.436 Bulk Density of Mixture (Ibs/ft3) 151.6 200 C.F. 0.00 Date of Boil Test History Date Meclaimed Agg. From RAP
Design ESAL Range 0.3 to < 3 Million Bulk Sp. Grav. of Combined Aggr.(Gsb) 2.701 A.C. Test Method PTM No. 757 A.C. Supplier AASHTO T 176 Sand Fin Equivalency (%) Unco 89.6	Mold Diameter # Gyrations (mm) at Ninitial 150 7 Mixture Mass % Air Voids to Compact (g) at Ninitial 4,740.0 14.5 A External Party Oven Make/M Thermolyne/NCAT AP-2 N Name COMBINE AASHTO T 304 e Aggr. Angularity ompacted Voids (%) % 11 45.9	X CHARACTER # Gyrations at NDesign 75 % Aid Voids at NDesign 4.0 SPHALT CONT lodel Furm 0x MOISTURE SUS Dry PSI Streng 100.7 D AGGREGATI M D5821 - Coarse Face Crush 100.0	RISTICS (GYRA # Gyrations at NMaximum 115 % Air Voids at NMaximum 2.6 ENT TEST MEI lace Temp (°C) 538.0 CEPTIBLITY I gth Wet PSI Si FOC E CONSENSUS & Aggregate Ang % 2 Face Cl 100.0	TORY) Voids in Minera Aggregate (VMA) 13.8 Voids filled with Asphalt (VFA) % 71.0 THOD Sample Size fo 2,000.0 DATA trength TSR Vall PROPERTIES PROPERTIES Aularity Flat / Ef- rush 5:1 1.6	I Theoretia % Sp. Grav 2.5 Theoretia 6 Density 15 or C.F. 4 ue Date o 100 STM D4791 ongated Part 3 s	cal Max. . (Gmm) i37 cal Max. (Ibs/ft3) 7.9 Asphalt 0.47 of TSR E 0.47	Bulk Sp. Grav. of Mixture (Gmb) 2.436 Bulk Density of Mixture (Ibs/ft3) 151.6 200 C.F. 0.00 Date of Boil Test History Date of Boil Test History and / or RAS 14.3
Design ESAL Range 0.3 to < 3 Million Bulk Sp. Grav. of Combined Aggr.(Gsb) 2.701 A.C. Test Method PTM No. 757 A.C. Supplier Orticol 13 AASHTO T 176 Sand Fin Equivalency (%) Unco 89.6 Designed By : designed	Mold Diameter # Gyrations (mm) at Ninitial 150 7 Mixture Mass % Air Voids to Compact (g) at Ninitial 4,740.0 14.5 A External Party Oven Make/M Thermolyne/NCAT AP-2 Name COMBINE AASHTO T 304 te Aggr. Angularity ASTI compacted Voids (%) % 11 45.9 er [X CHARACTER # Gyrations at NDesign 75 % Aid Voids at NDesign 4.0 SPHALT CONT lodel Furm 0x MOISTURE SUS Dry PSI Streng 100.7 D AGGREGATH M D5821 - Coarse Face Crush 100.0 Designed By Ce	RISTICS (GYRA # Gyrations at NMaximum 115 % Air Voids at NMaximum 2.6 ENT TEST ME bace Temp (°C) 538.0 CEPTIBILITY I gth Wet PSI S CONSENSUS E CONSENSUS Aggregate Ang % 2 Face Cr 100.0 ertification ID :	TORY) Voids in Minera Aggregate (VMA) 13.8 Voids filled with Asphalt (VFA) 9 71.0 THOD Sample Size fo 2,000.0 DATA trength TSR Vall CHOPERTIES PROPERTIES Aularity Flat / El tush 5:1 1.6	I Theoretia % Sp. Grav 2.5 Theoretia 6 Density 157 or C.F. 4 ue Date o 105 STM D4791 ongated Part 3 s	cal Max. . (Gmm) i37 cal Max. (Ibs/fts) 7.9 Asphalt 0.47 of TSR E oros	Bulk Sp. Grav. of Mixture (Gmb) 2.436 Bulk Density of Mixture (Ibs/ft3) 151.6 200 C.F. 0.00 Date of Boil Test THORES otal % Reclaimed Agg. From RAP and / or RAS 14.3 4/1/11
Design ESAL Range 0.3 to < 3 Million Bulk Sp. Grav. of Combined Aggr.(Gsb) 2.701 A.C. Test Method PTM No. 757 A.C. Supplier ONICO 13 AASHTO T 176 Sand Fin Equivalency (%) Unco 89.6 Designed By : designe Submitted By : submit	Mold Diameter # Gyrations (mm) at Ninitial 150 7 Mixture Mass % Air Voids to Compact (g) at Ninitial 4,740.0 14.5 A External Party Oven Make/M Thermolyne/NCAT AP-2 Name COMBINE AASHTO T 304 e Aggr. Angularity ASTI ompacted Voids (%) % 1 (45.9	X CHARACTER # Gyrations at NDesign 75 % Aid Voids at NDesign 4.0 SPHALT CONT lodel Furm 0x MOISTURE SUS Dry PSI Streng 100.7 D AGGREGATI M D5821 - Coarse Face Crush 100.0 Designed By Ce Submitted By	RISTICS (GYRA # Gyrations at NMaximum 115 % Air Voids at NMaximum 2.6 ENT TEST ME bace Temp (°C) 538.0 GCEPTIBILITY I gth Wet PSI S GCEPTIBILITY I gth Wet PSI S CONSENSUS Aggregate Ang % 2 Face CI 100.0 ertification ID : Certification ID :	TORY) Voids in Minera Aggregate (VMA) 13.8 Voids filled with Asphalt (VFA) 9 71.0 THOD Sample Size for 2,000.0 DATA trength TSR Vall Voids filled with Sample Size for 2,000.0 DATA Sample Size for 2,000.0 DATA Sample Size for 2,000.0 DATA Sample Size for 1.0 Sample Size for 2,000.0 DATA Sample Size for 2,000.0 DATA Sample Size for 1.6 ROBIN V: BATMAN	I Theoretia % Sp. Grav 2.5 Theoretia 6 Density 157 or C.F. 4 ue Date o The STM D4791 ongated Part 3 s	cal Max. . (Gmm) i37 cal Max. (Ibs/ft3) 7.9 Asphalt 0.47 of TSR D f TSR D f TSR D f ticles	Bulk Sp. Grav. of Mixture (Gmb) 2.436 Bulk Density of Mixture (Ibs/ft3) 151.6 200 C.F. 0.00 Date of Boil Test THORE total % Reclaimed Agg. From RAP and / or RAS 14.3 4/1/11 7/21/15
Design ESAL Range 0.3 to < 3 Million Bulk Sp. Grav. of Combined Aggr.(Gsb) 2.701 A.C. Test Method PTM No. 757 A.C. Supplier Ortico 13 AASHTO T 176 Sand Fin Equivalency (%) Unco 89.6 Designed By : designer Submitted By : submit Approved By : approv	Mold Diameter # Gyrations (mm) at Ninitial 150 7 Mixture Mass % Air Voids to Compact (g) at Ninitial 4,740.0 14.5 A External Party Oven Make/M Thermolyne/NCAT AP-2 Name COMBINE AASHTO T 304 e Aggr. Angularity ASTI ompacted Voids (%) % 1 (45.9	X CHARACTER # Gyrations at NDesign 75 % Aid Voids at NDesign 4.0 SPHALT CONT lodel Furm 0x MOISTURE SUS Dry PSI Streng 100.7 D AGGREGATH M D5821 - Coarse Face Crush 100.0 Designed By Ce	RISTICS (GYRA # Gyrations at NMaximum 115 % Air Voids at NMaximum 2.6 ENT TEST ME bace Temp (°C) 538.0 GCEPTIBILITY I gth Wet PSI S GCEPTIBILITY I gth Wet PSI S CONSENSUS Aggregate Ang % 2 Face CI 100.0 ertification ID : Certification ID :	TORY) Voids in Minera Aggregate (VMA) 13.8 Voids filled with Asphalt (VFA) 9 71.0 THOD Sample Size for 2,000.0 DATA trength TSR Vall C 0.00 PROPERTIES PROPERTIES Aularity Flat / El tush 5:1 1.6 ROBIN E BATMAN	I Theoretia % Sp. Grav 2.5 Theoretia 6 Density 157 or C.F. 4 ue Date o The STM D4791 ongated Part 3 s	cal Max. . (Gmm) i37 cal Max. (Ibs/fts) 7.9 Asphalt 0.47 of TSR E oros	Bulk Sp. Grav. of Mixture (Gmb) 2.436 Bulk Density of Mixture (Ibs/ft3) 151.6 200 C.F. 0.00 Date of Boil Test THORES otal % Reclaimed Agg. From RAP and / or RAS 14.3 4/1/11

Supplier Code

Material Class

Job-Mix Formula

MIX CHARACTERISTICS (GYRATORY)								
Design ESAL Range	Mold Diameter (mm)	# Gyrations at Ninitial	# Gyrations at NDesign	# Gyrations at NMaximum	Voids in Mineral Aggregate (VMA) %	Theoretical Max. Sp. Grav. (Gmm)	Bulk Sp. Grav. of Mixture (Gmb)	
0.3 to < 3 Million	150	7	75	115	13.8	2.537	2.436	
Bulk Sp. Grav. of Combined Aggr.(Gsb)	Mixture Mass to Compact (g)	% Air Voids at Ninitial	% Aid Voids at NDesign	% Air Voids at NMaximum	Voids filled with Asphalt (VFA) %	Theoretical Max. Density (lbs/ft3)	Bulk Density of Mixture (lbs/ft3)	
2.701	4,740.0	14.5	4.0	2.6	71.0	157.9	151.6	

How we get Theoretical Max. Density =157.9 lbs/cu.ft.? 62.245 X the Theor. Max. Sp. Gr. (2.537) = 157.9 62.245 is density of water at 77°F. Do not multiply the Gmm by 62.4 (old).

Enter 157.9 into the nuclear gauge.

Ę

Determining Lots & Sublots and Sampling Locations

Problem 1 :

Part A: You are the inspector on a paving project using 1-½ inches of 9.5 mm wearing surface. The project calls for placing 3,745 tons for a 12-foot lane. You intend to take a combination of mixture acceptance and core samples. How many SUBLOTS will be involved?

How Many Sublots ?

- 3,745 tons > 2,500 So, Use Rule #1
- DIVIDE BY 500 AND ROUND UP
- 3,745 / 500 = 7.49 OR 8 **POSSIBLE sublots** to compute for sampling locations
- IF no paving delays > 5 days
- A sublot exists ONLY if you get both a loose and core sample

How Many Lots?

- We do not yet know how many Lots.
- LOT sizes are decided by actual paving schedules and Table D
- *Completed* lots must have 3 sublots (one loose mix sample and one core per sublot) and NEVER have more than 7 sublots

Problem 1 :

Part A: How many Lots and Sublots will be involved? **Answer:**

- 3,745 tons
- 1st LOT = 2,500 TONS = 5 SUBLOTS @ 500 TONS each
- 3,745 tons 2500 tons = 1,245 tons
- 1,245 tons ÷ 500 = 2 *complete* sublots from which you will get a combination of loose and core samples AND
- 245 tons from which you MAY or MAY not get a combination of loose and core samples.

Problem 1 :

Part A: How many Lots and Sublots will be involved?

1,245 tons > 1,000 and < 1,500. So, go to Table D.

- Using Table D, IF you got a combination of 3 box samples and 3 core samples from the 1,245 ton, then
 - New lot defined with 3 sublots
 - 2nd LOT = 1,245 TONS with 3 SUBLOTS
 - TOTAL: 2 LOTS and 8 SUBLOTS

Problem 1 :

Part A: How many Lots and Sublots will be involved?

OR

- Using Table D, IF YOU DID NOT get a combination of 3 box samples and 3 core samples, then
 - Two new sublots defined & put in previous lot
 - -1st Lot = 5 Sublots + 2 new defined sublots
 - TOTAL: 1 LOTS and 7 SUBLOTS

413.3(h)2.a Lots and Sublots: Table D

Re-adjustment of Lot Size & Associated Number of Sublots

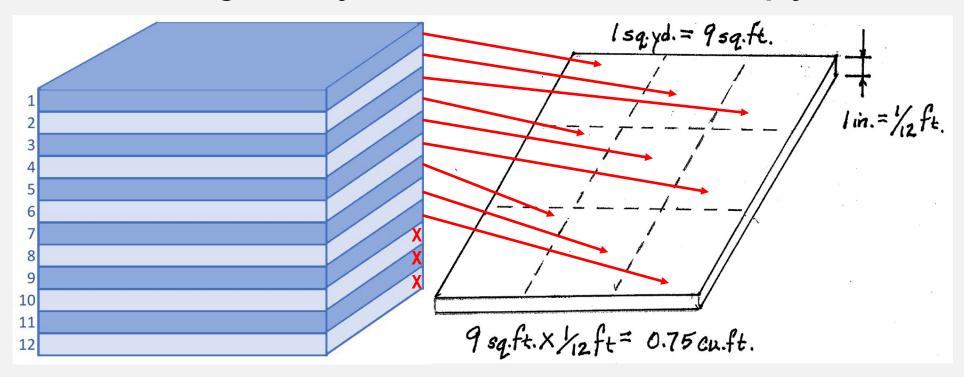
Remaining Quantity* Following Last Full Lot	Action
Less than 500 tons <u>without</u> a combination of one mixture acceptance sample and one core	Quantity combined with previous lot, (n=5)
Less than 500 tons <u>with</u> a combination of one mixture acceptance sample and one core	One new sublot defined & quantity combined with previous lot, (n=6)
500 tons to less than 1000 tons <u>without</u> a combination of two mixture acceptance samples and two cores	One new sublot defined & quantity combined with previous lot, (n=6)
500 tons to less than 1000 tons <u>with</u> a combination of two mixture acceptance samples and two cores	Two new sublots defined & quantity combined with previous lot, (n=7)
1000 tons to less than 1500 tons <u>without</u> a combination of three mixture acceptance samples and three cores	Two new sublots defined & quantity combined with previous lot, (n=7)
1000 tons to less than 1500 tons with a combination ofthree mixture acceptance samples and three cores	New lot defined, (n=3)

Problem 1 : Yield determination

 Part B: On the same project, the length of the sublots need to be determined. The first sublot contains 500 tons. What distance will the 500 tons of HMA pave if we are placing a 12-foot wide lane at 1 ¹/₂ inches thick?

We are **assuming** a mix density of **110 lbs/inch/yd²**.

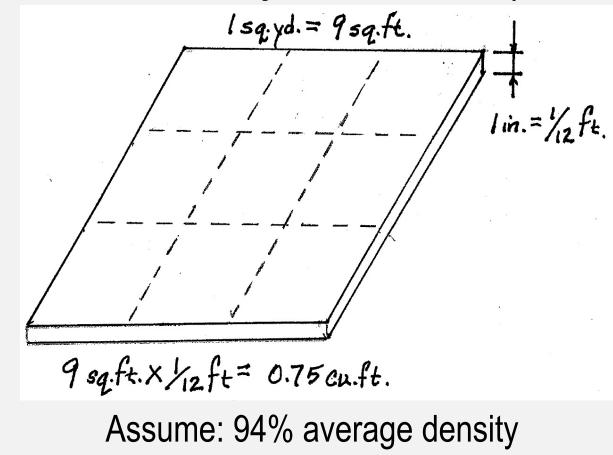
Problem 1 : Yield determination


• **Part B:** In a yield determination you either have the tons of material and want to find the area it covers **OR** you have the area it covers and want to find the amount of material (tons) needed.

You do this with the use of a unit of material in lbs./in./yd².

Yield Calculations

Converting Density from "lbs./cu.-ft." to "lbs./sq.-yd./in."


Since we only need 9 of the 12 (9/12=.75 or 75%) one-inch thick "tiles" to fill one square yard,

1 pound/square-yard/inch = 75% of 1 pound/cubic-foot, therefore, multiply lbs./cu.-ft. x 0.75 to get lbs./sq.-yd./in.

Yield Calculations

Theoretical Max. Density = 156 lbs/cu.ft. (from JMF)

So, 156 lbs/cu.ft. x 0.75 cu.ft. x 0.94 = 110 lbs/sq. yd./in. (unit of measure)

Problem 1: Yield Determination

Part B: What distance will the 500 tons of HMA pave?

Answer:

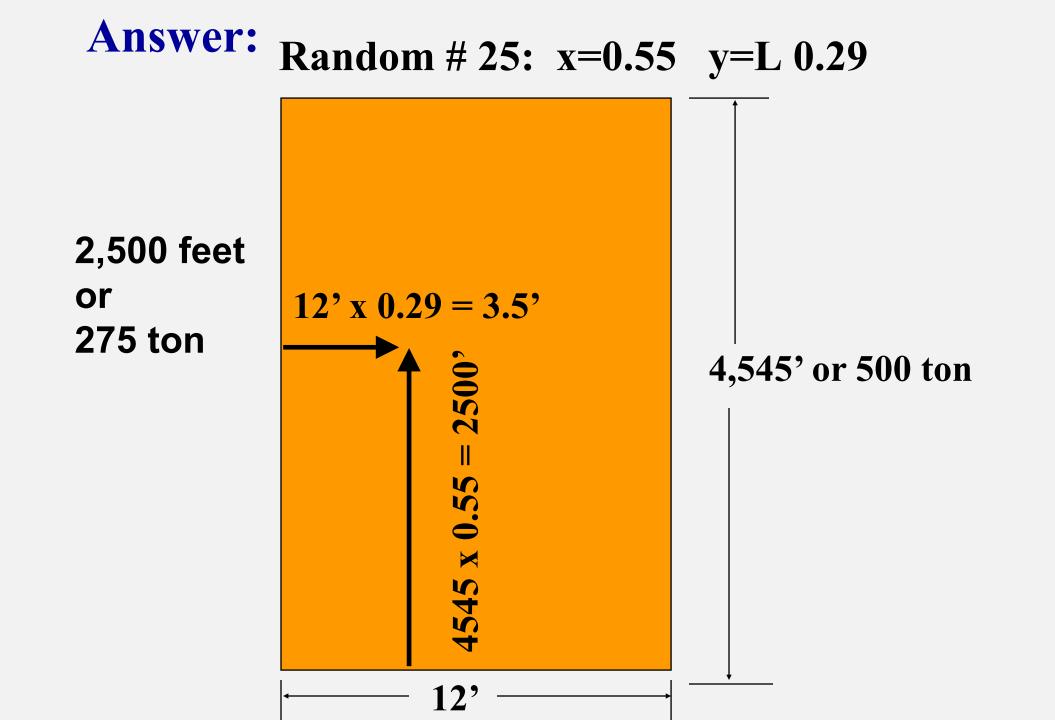
- $1 \frac{1}{2}$ inches × 110 lbs/inch/yd² = 165 lbs/yd²
- 500 tons \times 2,000 lbs/ton = 1,000,000 lbs.
- 1,000,000 lbs. \div 165 lbs/yd² = 6,061 yd² (Area)
- Area = Length × Width or Length = Area/Width
- Width of road is 12 feet or 4 yards
- (Area) 6,061 yd² \div 4 yds (width) = 1,515 lineal yds.
- 1,515 yds. \times 3ft./yd. = 4,545 feet.
- The length of the sublot is 4,545 feet.

Problem 1 : Yield determination Part B: What distance will the 500 tons of HMA pave?

Alternative Method:

- Width of road is 12 ft.
- $6061 \text{ yd}^2 \text{ (Area)} \times 9 \text{ ft}^2/\text{yd}^2 = 54,549 \text{ ft}^2$
- 54,549 ft² \div 12-foot-wide lane = 4,545 feet
- The length of the sublot is 4,545 feet.

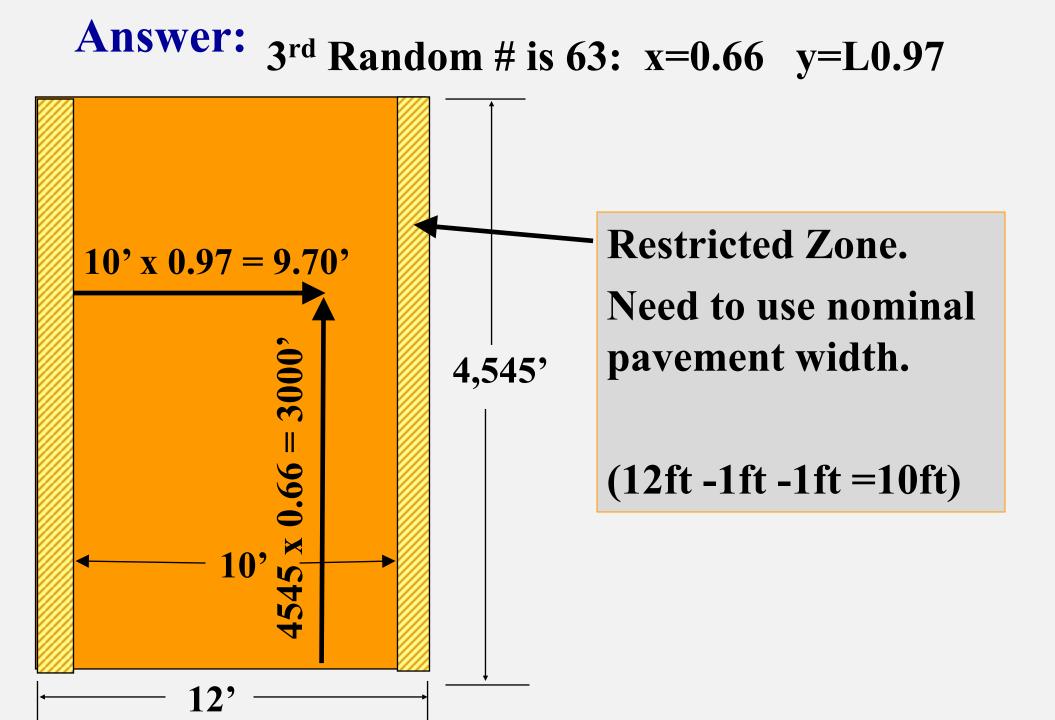
22


Problem 1 :Sample Location

Part C: Find the location on the pavement where the first box sample would be taken. The first sublot random number is 25.

PTM 1 # 25 X= .55 and Y=L 0.29 0.55 × 500-ton sublot = 275-ton sampling point

Sample will be taken from the UNIT hauling ton # 275



Problem 1 :Sample Location

Part D: Find the location on the pavement where you would take the third core sample. This will represent the third sublot. The first sublot PTM 1 random number is 61.

What would be the tonnage sampling point?

- First use random number in the sublot:
 0.66 × 500 = 330 tons
- Then, find the tonnage in the Lot:
 500 + 500 + 330 = 1,330 tons

Sample from the unit hauling these tons.

Problem 2 : Yield calculation

- A Contractor is placing 18,000 yd² of Superpave Asphalt Wearing Course:
 - Binder: PG 64E-22
 - Traffic 3 to <10 million ESALS</p>
 - NMAS: 9.5 mm mix
 - Depth & Width: $1 \frac{1}{2}$ " depth for a 12-foot lane.
- Assume yield of 115 lb./inch/yd² of pavement.

Part A: Calculate tonnage and total number of lots and sublots.

Part B: What will be the length of each sublot?

Problem 2 : Part A: Answer

- 18,000 sq. yd. × 115 lbs./inch/yd² × 1 $\frac{1}{2}$ " = 3,105,000 lbs.
- 3,105,000 lbs. ÷ 2000 lbs./ton = 1,552.5 tons
- Total tons = 1,552.5
- Projects with total tonnage of > 500 tons and <2500 tons, tonnage is considered a lot and divided into 5 equal sublots (rule #2)
- 1 lot of 1,552.5 tons with 5 sublots
- 1,552.5 tons ÷ 5 = **310.5 tons per sublot**

Problem 2, Part B : length of each sublot

- 115 lbs./inch/yd² × 1 $\frac{1}{2}$ " = 172.5 lbs./yd²
- $310.5 \text{ tons} \times 2000 \text{ lbs./ton} = 621,000 \text{ lbs.}$
- 621,000 lbs. \div 172.5 lbs./yd² = 3,600 yd²
- $3600 \text{ yd}^2 \times 9 \text{ ft}^2/\text{yd}^2 = 32,400 \text{ ft}^2$
- 32,400 ft² \div 12-ft. lane = 2,700 linear feet.

Alternate: $3,600 \text{ yd}^2$

- 12-foot lane = 4 yds
- $3,600 \text{ yd}^2 \div 4 \text{ yd.} = 900 \text{ yds}$
- 900 yds \times 3 ft/yd. = 2,700 linear feet.

Problem 3:

- A Contractor is placing approximately 6,500 tons of Superpave Asphalt Wearing Course for which **acceptance by lots** is required
 - Binder: PG 64S-22
 - Traffic Level: 3 to <10 million ESALS
 - NMAS: 9.5mm mix
 - Depth & Width: $1 \frac{1}{2}$ " for a 12-foot lane
 - Duration of Paving: 4 days
- The actual daily placement is as follows:
 - 1st Day: 1,532.12
 - 2nd Day: 1,511.14
 - 3rd Day: 1,876.51
 - 4th Day: 1,532.25
- Assume yield of 110 lb./inch/yd² of pavement
- Calculate total number of lots and sublots, assuming you obtained the required combination of both box and core samples on the last partial lot.

How Many Sublots?

- $6500 \div 500 = 13$ sublots
- How many lots?
- We do not yet know
- Why Not?

Problem 3:

Answer:

- Total tons = 6,452.02 tons ÷ 2,500 tons/lot = 2 full lots (5 sublots each) with a final lot adjustment
- 2 lots x 2,500 tons/lot = 5,000 tons
- 6,452.02 tons 5,000 tons = 1,452.02 tons
- Using Table D to adjust final tonnage: 1,452.02 is >1,000 but less than 1,500
- Since you got a combination of 3 box samples and 3 core samples:
 New lot defined with 3 sublots
- Therefore, total of 3 completed lots and 13 sublots

Answer: with required combination of samples

	Tons	Lot 1	Lot 2	Lot 3
Day 1	1,532.12	1,532.12		
Day 2	1,511.14	967.88	543.26	
Day 3	1,876.51		1,876.51	
Day 4	1,532.25		80.23	1,452.02
Total Tons	6,452.02	2,500	2,500	1,452.02
Sublots		5	5	3

Problem 4: Paving Delay

- A Contractor is placing approximately 6,500 tons of Superpave Asphalt Wearing Course for which **acceptance by lots** is required
 - Binder: PG 64S-22
 - Traffic Level: 3 to <10 million ESALS
 - NMAS: 9.5mm mix
 - Depth & Width: $1 \frac{1}{2}$ " for a 12-foot lane
 - Duration of Paving: 4 days
- The actual daily placement is as follows:
 - 1st Day: 1,532.12
 - 2nd Day: 1,511.14
 - 3rd Day: 1,876.51
 - Delayed 7 days
 - 10th Day: 1,532.25
- Assume yield of 110 lb./inch/yd² of pavement

Problem 4: Paving Delay

• Calculate total number of lots and sublots. Assume a full combination of samples obtained on the last lot at the end of the 3rd Day. Assume *not* a full combination of samples obtained on the last lot of the 10th day.

Answer:

3 Lots and 13 Sublots

	Tons	Lot 1	Lot 2	Lot 3
Day 1	1,532.12	1,532.12		
Day 2	1,511.14	967.88	543.26	
Day 3	1,876.51		1,876.51	
Total tons	4,919.77	2500	2,419.77	
Sublots		5	5*	
	5 days	s or more de	elay	
Day 10	1,532.12			1,532.12
Sublots				3**

*with combination of required samples **without combination of required samples

Certified Asphalt Field Technician Superpave: An Overview

Topics We Will Review:

- Major Pavement Distresses
- Superpave System to Address Distresses
- Superpave Binder Performance Grade (PG)
- Aggregate Requirements in Superpave
- Determination of Traffic Levels: ESALs
- Superpave Mix Sizes (Max. Agg. Size vs. Nominal Max. Agg. Size)
- **Job Mix Formula (JMF) and Theoretical Max. Sp. Gr. of Mix (G**_{mm})

Problems with Asphalt Mixture Behavior • **Permanent Deformation**

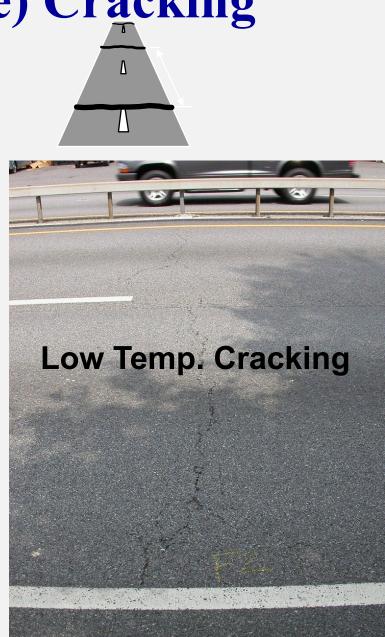
- Low Temperature Cracking
- Fatigue Cracking

brought research leading to Superpave technology

3

SUperior PER forming asphalt PAVE ments

- **Durability & Crack Resistance**
 - High quality asphalt binder
 - Adequate asphalt film thickness around aggregate (Asphalt Content)
- <u>Rutting Resistance</u>

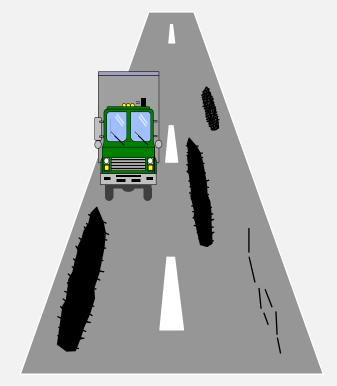

F

- High content of crushed aggregate
- Stone-on stone contact
- High Modulus Asphalt

Resist Low Temperature (Shrinkage) Cracking

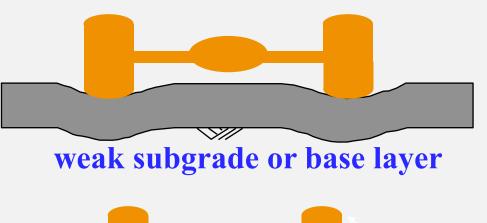
- Environmentally Induced Distress
- Stresses Induced by Temperature Change
- Pavement tends to shrink
- Transverse Cracks
- Low temperature crack resistance:
 - Use Performance Grade (PG) binders
 - Binder meets performance requirements for low pavement temperature

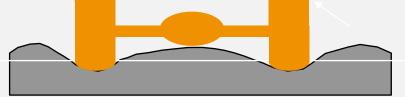
Resist Low Temperature (Shrinkage) Cracking


Reflective Cracking

Resist Fatigue Cracking

- Fatigue cracking in Wheel path
- Progressive Damage
 - longitudinal cracking
 - alligator cracking
 - Potholes
- Fatigue crack resistance:
 - Binder meets performance requirements for intermediate pavement temperature
 - Increase binder content


Fatigue Cracking



Resist Rutting

- Rutting in Wheel path
- Progressive Damage

• **Rutting resistance:**

- weak asphalt layer
- Binder meets performance requirements for high pavement temperature
- High percent of crushed aggregate
- Stone-to-stone contact

Severe Rutting

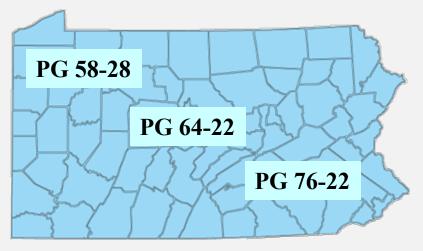
Superpave Asphalt Binder Specification

F

Grading System Based on Climate

PG 64-22

Performance Grade Average 7-day max pavement design temp



Superpave Asphalt Binder Specification (AASHTO M 320)

• Grades available

=

3 Standard Performance Grade (PG) Binders

PG 58-28 ≈ AC - 10

PG 64-22 ≈ AC - 20

PG 76-22 ≈ Polymer Modified Asphalt Cement for High Traffic Volume Highways

Note: Other grades available per PennDOT special provision

PennDOT MSCR Specification (AASHTO M 332) PennDOT has now moved to AASHTO M 332 Specification

Traffic Level (million ESAL	Jnr @ 3.2 KPa Stress Test Temp. = 64°C	Binder Grade
< 3	< 4.5	Standard (S)
>3 and < 10	< 2.0	Heavy (H)
>10 and < 30	< 1.0	Very Heavy (V)
> 30	< 0.5	Extreme (E)

Determine J_{nr} (Creep Compliance)

PennDOT MSCR Specification (AASHTO M 332)

PennDOT has now moved to AASHTO M 332 Specification

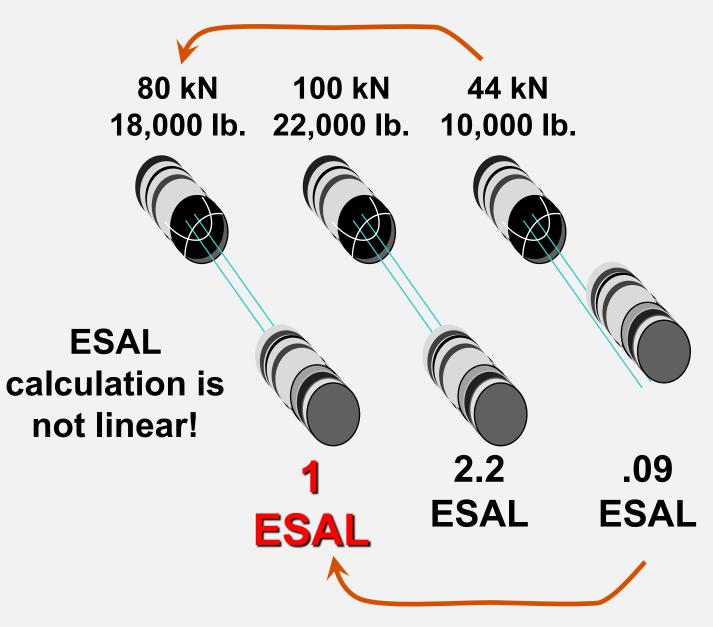
AASHTO M 320	AASHTO M 332
Grading	Grading
PG 58-28	PG 58S-28
PG 64-22	PG 64S-22
PG 76-22	PG 64E-22

Superpave Mix Design Considers Essential Aggregate Properties

- Remember: ROCK CARRIES THE LOAD
- Consensus Properties

F

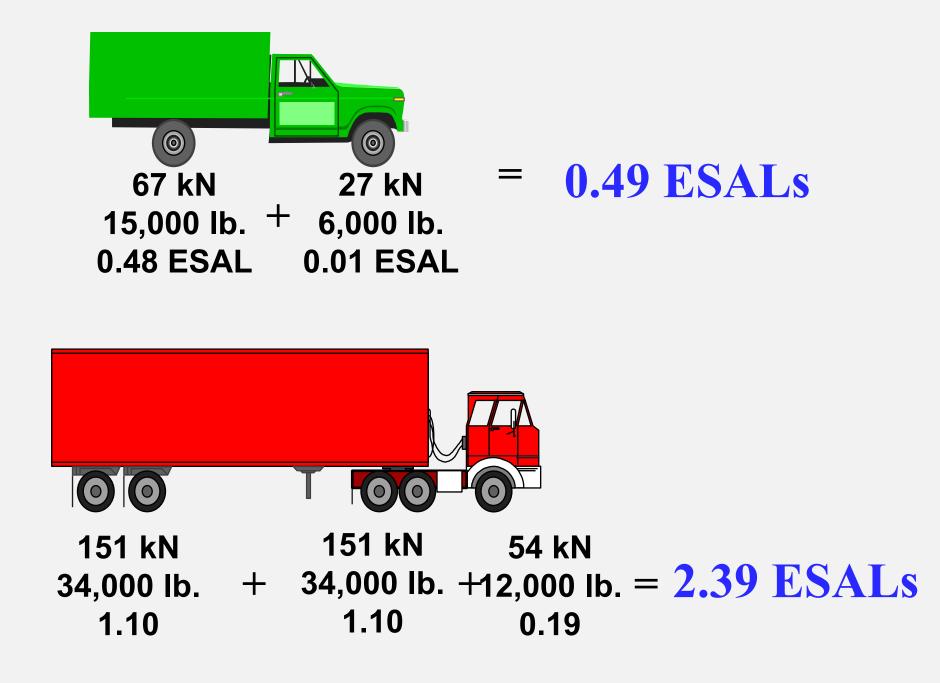
- Coarse aggregate angularity (CAA)
- Fine aggregate angularity (FAA)
- Flat and elongated particles
- Clay content
- Source Properties
 - Toughness (resistance to wear and tear under traffic load)
 - Soundness (resistance to weathering and climate effects)
 - Deleterious materials and detrimental clay


Superpave Specifications: ESALS

1 ESAL (Equivalent Single Axle Load) is 18,000 lbs.

- Asphalt Mix Design is based on Traffic Level.
- ESAL Levels are related to Traffic Levels.
- Truck traffic has huge impact on ESAL Levels.
- ESALs are used to determine the amount of asphalt in the mix.
- Important to have the right amount of asphalt to reduce rutting and cracking.

ESAL Comparison



Axle Load goes from 10,000 lb. to 18,000 lb. That means it becomes 80% larger. BUT ESAL goes from 0.09 to 1. That means it is almost 10 times larger.

> Axle Load goes from 18,000 lb. to 22,000 lb. BUT ESAL goes from 1 to 2.2. That means it is almost 120% larger.

Rule of Thumb: Ratio of single axle loads raised to the power of 4 ROUGHLY gives ratio of ESALs.

- In road design, for a 20-year pavement life:
 - **One fully loaded tractor-trailer per day for 20 years:**
 - $= 2.39 \times 365 \times 20 \approx 17,450 \text{ ESALs}$

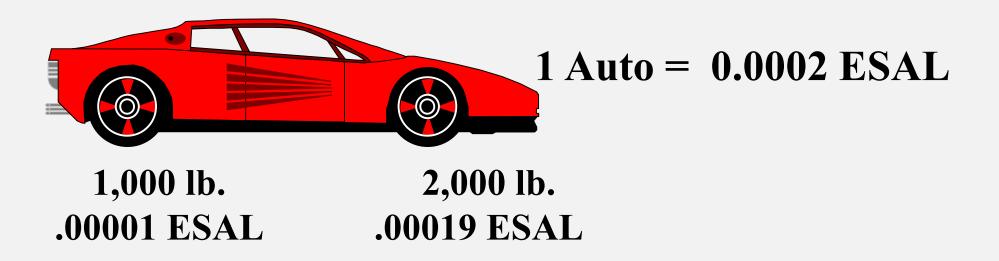
(assumed 0% growth rate)

Typical ESAL ranges for Asphalt Mixes in 20 years:

ESALS (Millions)	Trucks per Day	Traffic Level
0.0 - 0.3	0 to 17	Light
0.3 to 3.0	17 to 172	Medium
3.0 to 10.0	172 to 573	High
10.0 to 30.0	573 to 1,720	Heavy

Ţ

Off-Highway Two-Axle Power Train Haul Trucks (ESALs???)



Transporting Super Heavy Dump Trucks

SOURCE OF PHOTO: http://www.miningmayhem.com/2011/10/truck-transport.html

1 Truck @ 2.39 ESALs = how many cars? Ans: 11,950 Autos

Cars do not count much!!!!

Although Some Cars Can Also Be a Problem

PennDOT

Laboratory Gyratory Compaction Levels

Design ESALs (million)	N _{initial}	N _{design}	N _{max}
< 0.3	6	50	75
≥ 0.3 to < 3	7	75	115
3 to < 30	7	75	115
\geq 30	7	75	115
All ESAL Levels for Base Course Mixtures	7	75	115

Gradation Analysis and NMAS

Stack in Mechanical Shaker

Individual Sieve

Superpave uses the Nominal Maximum Aggregate Size

Aggregate Size Definitions

Nominal Maximum Aggregate Size

One size larger than the first sieve to retain more than 10% of the sample and is the "name" of the mix.

Maximum Aggregate Size

F

One size larger than nominal maximum size

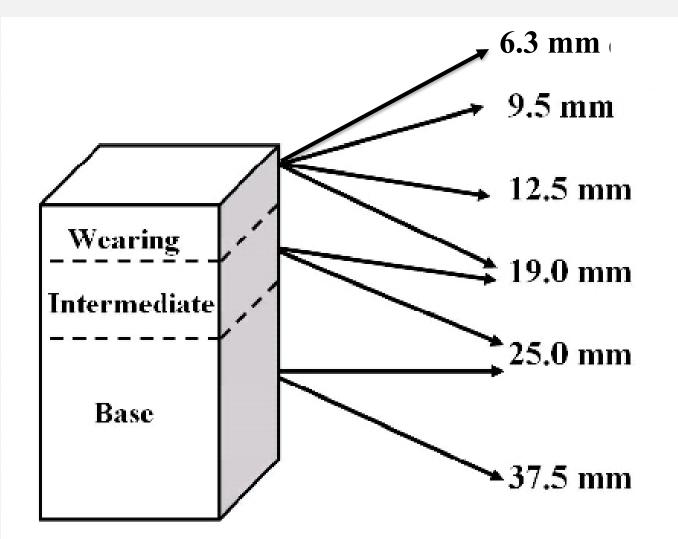
Max. Size vs Nominal Max. Agg. Size (NMAS)

Example:

Aggreg	ate 1	Aggregate 2			
Sieve Size	% Passing	Sieve Size	% Passing		
25 mm	100%	25 mm	100%		
19 mm	100%	19 mm	98%		
12.5 mm	92%	12.5 mm	87%		
9.5 mm	72%	9.5 mm	72%		
	Max Si	ieve			
	Nom. N	Max. Sieve			

Superpave Mixes: Size Designations

Superpave	Nominal Max Agg. Size	Max Agg. Size
Designation	<u>mm (inches)</u>	<u>mm (inches)</u>
37.5 mm (1.5")	37.5 (1.5)	50.0 (2)
25.0 mm (1.0")	25.0 (1.0)	37.5 (1.5)
19.0 mm (3/4")	19.0 (3/4)	25.0 (1.0)
12.5 mm (1/2")	12.5 (1/2)	19.0 (3/4)
9.5 mm (3/8")	9.5 (3/8)	12.5 (1/2)
— 6.3 mm (1/4")	6.3 (1/4)	9.5 (3/8)
4.75 mm (1/5")	4.75 (1/5)	9.5 (3/8)



Ţ

Layer Choices

F

Superpave Mixes: Designations

- 1. BINDER GRADE (PG)
- 2. DESIGN LOADING (ESALS)
- 3. MIX SIZE (NMAS)

F

4. SKID RESISTANCE (SRL)

Job-Mix Formula

F

TR-448A (6-15)	JOB MIX FORMULA REPORT			pave 123 SR25BC			
6	PennDOT Mix Des Year 2015						Non-Applicable PG6422
pennsylvania	Supplier JMF/Design	Number (Optio	onal)	Origi	Asphait M tion Classif nal Approv Status	ication al Date	HMA Coarse-Graded proved
Supplier Pave, I	nc	Location a	anywhere				Mix Time
ECMS Number	PO NoLine Item No			08 Spec		Dr	y(s) Wet(s)
SR &		Plant Type	AB PI	lant 10			5 35
Contractor		Location	-				
Material Supplier HAP41A14	Material Code - Cla 207 (Aggregate Fine			duct Name and A1	% 4.100	Spec. 2.568	% 1.72
HAP41B14	207 (Aggregate Fine			3 (W)	16.400	2.663	1.37
HAP41B14	203 (Aggregate) - A			4467	17.400	2.003	0.89
HAP41B14	203 (Aggregate) - A		-	A57	36,100	2.710	1.33
HAP41B14	203 (Aggregate) - /			A8	7.300	2.698	1.27
NOBLT 14	17 (Hot Rap Design) -		1	RAP	15.000	2.740	0.00
UNRC0 15	1 (Asphalt Cement) - P	G6422		AC	3.700	1.031	
		JOB MIX FORM	IULA AND DES	IGN			
A.C. / Sieve Size A.C%	a #200 #100 #50	#30 #	16 #8	#4 3/8"	1/2" :	3/4" 1"	1 1/2"
Design Target 4.4	4.0 5 7	12 17	25	37 53	66 8	6 96	100
% Virgin A.C.	3.7	% Reclaimed A	.C. from RAP	0.70	Total % As	sphalt (Pb)	4.4
		AV Development A	C 6 DAR		% Eff. Asph		4.1
Virgin A.C. PG Binder Gr	ade PG6422	% Reclaimed A	.c. from KAS		70 Ell. Aspli	alt billuer	4.1
Virgin A.C. PG Binder Gr	44.20	% Reclaimed A	C. from RAS	0.40	% Ell. Aspli		4.1
	44.00 Mi	X CHARACTER	RISTICS (GYRA				10
Design ESAL Range	44.00	X CHARACTER	RISTICS (GYRA # Gyrations	TORY) Voids in Miner; Aggregate (VMA	al Theoret	ical Max.	4.1 Bulk Sp. Grav. of Mixture (Gmb)
Design ESAL Range 0.3 to < 3 Million	Mold Diameter # Gyrations (mm) at Ninitial 150 7	X CHARACTER s # Gyrations at NDesign 75	RISTICS (GYRA # Gyrations at NMaximum 115	Voids in Miner Aggregate (VMA 13.8	al Theoret)% Sp. Gra 2.	ical Max. v. (Gmm) 537	Bulk Sp. Grav. of Mixture (Gmb) 2.436
Design ESAL Range 0.3 to < 3 Million Bulk Sp. Grav. of	Mold Diameter # Gyrations (mm) at Ninitial 150 7 Mixture Mass % Air Voids	X CHARACTER # Gyrations at NDesign 75 % Aid Voids	STICS (GYRA # Gyrations at NMaximum 115 % Air Voids	Voids in Minera Aggregate (VMA 13.8 Voids filled wit	al Theoret)% Sp.Gra 2. h Theoret	ical Max. v. (Gmm) 537 ical Max.	Bulk Sp. Grav. of Mixture (Gmb) 2.436 Bulk Density of
Design ESAL Range 0.3 to < 3 Million Bulk Sp. Grav. of Combined Aggr.(Gsb)	Mold Diameter (mm) # Gyrations at Ninitial 150 7 Mixture Mass to Compact (g) % Air Voids at Ninitial	X CHARACTER 5 Gyrations at NDesign 75 5 % Aid Voids at NDesign	RISTICS (GYRA # Gyrations at NMaximum 115 % Air Voids at NMaximum	Voids in Miner Aggregate (VMA 13.8 Voids filled wit Asphalt (VFA)	al Theoret)% Sp. Gra 2. h Theoret % Density	ical Max. v. (Gmm) 537 ical Max. y (Ibs/ft3)	Bulk Sp. Grav. of Mixture (Gmb) 2.436 Bulk Density of Mixture (Ibs/ft3)
Design ESAL Range 0.3 to < 3 Million Bulk Sp. Grav. of	Mold Diameter (mm) # Gyrations at Ninitial 150 7 Mixture Mass to Compact (g) % Air Voids at Ninitial 4,740.0 14.5	X CHARACTER # Gyrations at NDesign 75 % Aid Voids at NDesign 4.0	RISTICS (GYRA # Gyrations at NMaximum 115 % Air Voids at NMaximum 2.6	Voids in Miner Aggregate (VMA 13.8 Voids filled wit Asphalt (VFA) 71.0	al Theoret)% Sp. Gra 2. h Theoret % Density	ical Max. v. (Gmm) 537 ical Max.	Bulk Sp. Grav. of Mixture (Gmb) 2.436 Bulk Density of
Design ESAL Range 0.3 to < 3 Million Bulk Sp. Grav. of Combined Aggr.(Gsb) 2.701	Mold Diameter (mm) # Gyrations at Ninitial 150 7 Mixture Mass to Compact (g) % Air Voids 4,740.0 14.5 A	X CHARACTER # Gyrations at NDesign 75 % Aid Voids at NDesign 4.0 SPHALT CONT	RISTICS (GYRA # Gyrations at NMaximum 115 % Air Voids at NMaximum 2.6 ENT TEST MET	Voids in Miner: Aggregate (VMA 13.8 Voids filled wit Asphalt (VFA) 71.0 FHOD	al Theoret)% Sp. Gra 2. h Theoret % Density 15	ical Max. v. (Gmm) 537 ical Max. y (Ibs/ft3) 57.9	Bulk Sp. Grav. of Mixture (Gmb) 2.436 Bulk Density of Mixture (Ibs/ft3) 151.6
Design ESAL Range 0.3 to < 3 Million Bulk Sp. Grav. of Combined Aggr.(Gsb) 2.701	Mold Diameter (mm) # Gyrations at Ninitial 150 7 Mixture Mass to Compact (g) % Air Voids at Ninitial 4,740.0 14.5	X CHARACTER # Gyrations at NDesign 75 % Aid Voids at NDesign 4.0 SPHALT CONT Nodel Furr	RISTICS (GYRA # Gyrations at NMaximum 115 % Air Voids at NMaximum 2.6	Voids in Miner: Aggregate (VMA 13.8 Voids filled wit Asphalt (VFA) 71.0 FHOD	al Theoret)% Sp. Gra 2. h Theoret % Density 15 or C.F.	ical Max. v. (Gmm) 537 ical Max. y (Ibs/ft3)	Bulk Sp. Grav. of Mixture (Gmb) 2.436 Bulk Density of Mixture (Ibs/ft3)
Design ESAL Range 0.3 to < 3 Million Bulk Sp. Grav. of Combined Aggr.(Gsb) 2.701 A.C. Test Method	Mold Diameter # Gyrations (mm) at Ninitial 150 7 Mixture Mass % Air Voids to Compact (g) at Ninitial 4,740.0 14.5 A External Party Oven Make/M Thermolyne/NCAT AP-2	X CHARACTER # Gyrations at NDesign 75 % Aid Voids at NDesign 4.0 SPHALT CONT Nodel Furn 0x	RISTICS (GYRA # Gyrations at NMaximum 115 % Air Voids at NMaximum 2.6 ENT TEST MEI hace Temp (°C)	Voids in Miner; Aggregate (VMA 13.8 Voids filled wit Asphalt (VFA) 71.0 THOD Sample Size fr 2,000.0	al Theoret)% Sp. Gra 2. h Theoret % Density 15 or C.F.	ical Max. v. (Gmm) 537 ical Max. y (Ibs/ft3) 57.9 Asphalt	Bulk Sp. Grav. of Mixture (Gmb) 2.436 Bulk Density of Mixture (Ibs/ft3) 151.6 200 C.F.
Design ESAL Range 0.3 to < 3 Million Bulk Sp. Grav. of Combined Aggr.(Gsb) 2.701 A.C. Test Method	Mold Diameter # Gyrations (mm) at Ninitial 150 7 Mixture Mass % Air Voids to Compact (g) at Ninitial 4,740.0 14.5 A External Party Oven Make/M Thermolyne/NCAT AP-2	X CHARACTER # Gyrations at NDesign 75 % Aid Voids at NDesign 4.0 SPHALT CONT Nodel Furr 0x MOISTURE SUS	RISTICS (GYRA # Gyrations at NMaximum 115 % Air Voids at NMaximum 2.6 ENT TEST MEI hace Temp (°C) 538.0 GEPTIBILITY E	Voids in Miner; Aggregate (VMA 13.8 Voids filled wit Asphalt (VFA) 71.0 THOD Sample Size fr 2,000.0	al Theoret)% Sp. Gra 2. h Theoret % Density 15 or C.F.	ical Max. v. (Gmm) 537 ical Max. y (Ibs/ft3) 57.9 Asphalt 0.47	Bulk Sp. Grav. of Mixture (Gmb) 2.436 Bulk Density of Mixture (Ibs/ft3) 151.6 200 C.F.
Design ESAL Range 0.3 to < 3 Million Bulk Sp. Grav. of Combined Aggr.(Gsb) 2.701 A.C. Test Method PTM No. 757	Mold Diameter # Gyrations (mm) at Ninitial 150 7 Mixture Mass % Air Voids to Compact (g) at Ninitial 4,740.0 14.5 A External Party Oven Make/N Thermolyne/NCAT AP-2	X CHARACTER # Gyrations at NDesign 75 % Aid Voids at NDesign 4.0 SPHALT CONT Nodel Furr 0x MOISTURE SUS	RISTICS (GYRA # Gyrations at NMaximum 115 % Air Voids at NMaximum 2.6 ENT TEST MEI hace Temp (°C) 538.0 GEPTIBILITY E	Voids in Minera Aggregate (VMA 13.8 Voids filled wit Asphalt (VFA) 71.0 THOD Sample Size fi 2,000.0 DATA	al Theoret)% Sp. Gra 2. h Theoret % Density 15 or C.F.	ical Max. v. (Gmm) 537 ical Max. y (Ibs/ft3) 57.9 Asphalt 0.47	Bulk Sp. Grav. of Mixture (Gmb) 2.436 Bulk Density of Mixture (Ibs/ft3) 151.6 200 C.F. 0.00
Design ESAL Range 0.3 to < 3 Million Bulk Sp. Grav. of Combined Aggr.(Gsb) 2.701 A.C. Test Method PTM No. 757 A.C. Supplier	Mold Diameter # Gyrations (mm) at Ninitial 150 7 Mixture Mass % Air Voids to Compact (g) at Ninitial 4,740.0 14.5 A External Party Oven Make/N Thermolyne/NCAT AP-2 Name	X CHARACTER # Gyrations at NDesign 75 % Aid Voids at NDesign 4.0 SPHALT CONT MODEL FUTT 0X MOISTURE SUS Dry PSI Streng 105.7	RISTICS (GYRA # Gyrations at NMaximum 115 % Air Voids at NMaximum 2.6 ENT TEST MEI hace Temp (°C) 538.0 GEPTIBILITY E	Voids in Minera Aggregate (VMA 13.8 Voids filled wit Asphalt (VFA) 71.0 THOD Sample Size fi 2,000.0 DATA trength TSR Va	al Theoret)% Sp. Gra 2. h Theoret % Density 15 or C.F.	ical Max. v. (Gmm) 537 ical Max. y (Ibs/ft3) 57.9 Asphalt 0.47	Bulk Sp. Grav. of Mixture (Gmb) 2.436 Bulk Density of Mixture (Ibs/ft3) 151.6 200 C.F. 0.00 Date of Boil Test
Design ESAL Range 0.3 to < 3 Million Bulk Sp. Grav. of Combined Aggr.(Gsb) 2.701 A.C. Test Method PTM No. 757 A.C. Supplier	Mold Diameter (mm) # Gyrations at Ninitial 150 7 Mixture Mass to Compact (g) # Air Voids to Compact (g) # Air Voids at Ninitial 4,740.0 14.5 A External Party Oven Make/N Thermolyne/NCAT AP-2 Name AC COMBINE AASHTO T 304	X CHARACTER # Gyrations at NDesign 75 % Aid Voids at NDesign 4.0 SPHALT CONT fodel Furn 0x MOISTURE SUS Dry PSI Streng 105.7 D AGGREGATI	RISTICS (GYRA # Gyrations at NMaximum 115 % Air Voids at NMaximum 2.6 ENT TEST MET acce Temp (°C) 538.0 SCEPTIBILITY I gth Wet PSI St ECONSENSUS	Voids in Miner: Aggregate (VMA 13.8 Voids filled wit Asphalt (VFA) 71.0 THOD Sample Size fi 2,000.0 DATA trength TSR Va PROPERTIES	al Theoret) % Sp. Gra 2: h Theoret % Density 15 or C.F.	ical Max. v. (Gmm) 537 ical Max. v (Ibs/ft3) 57.9 Asphalt 0.47 of TSR [Bulk Sp. Grav. of Mixture (Gmb) 2.436 Bulk Density of Mixture (Ibs/ft3) 151.6 200 C.F. 0.00 Date of Boil Test
Design ESAL Range 0.3 to < 3 Million Bulk Sp. Grav. of Combined Aggr.(Gsb) 2.701 A.C. Test Method PTM No. 757 A.C. Supplier ONINCO 15 AASHTO T 176 Sand Fin	Mold Diameter # Gyrations (mm) at Ninitial 150 7 Mixture Mass % Air Voids to Compact (g) at Ninitial 4,740.0 14.5 External Party Oven Make/N Thermolyne/NCAT AP-2 Name COMBINE AASHTO T 304 e Aggr. Angularity AST	X CHARACTER # Gyrations at NDesign 75 % Aid Voids at NDesign 4.0 SPHALT CONT Iodel Furn 0x MOISTURE SUS Dry PSI Streng 100.7 D AGGREGATI M D5821 - Coarse	RISTICS (GYRA # Gyrations at NMaximum 115 % Air Voids at NMaximum 2.6 ENT TEST MET lace Temp (°C) 538.0 SCEPTIBILITY I gth Wet PSI St 100 E CONSENSUS e Aggregate Ang	Voids in Miner: Aggregate (VMA 13.8 Voids filled wit Asphalt (VFA) 71.0 THOD Sample Size f 2,000.0 DATA trength TSR Va PROPERTIES Valarity Flat / E	al Theoret) % Sp. Gra 2. h Theoret % Density 15 or C.F. lue Date ASTM D4791 longated Par	ical Max. v. (Gmm) 537 ical Max. ((Ibs/ft3) 57.9 Asphalt 0.47 of TSR 0.57 of TSR tricles	Bulk Sp. Grav. of Mixture (Gmb) 2.436 Bulk Density of Mixture (Ibs/ft3) 151.6 200 C.F. 0.00 Date of Boil Test Hisros
Design ESAL Range 0.3 to < 3 Million Bulk Sp. Grav. of Combined Aggr.(Gsb) 2.701 A.C. Test Method PTM No. 757 A.C. Supplier OVINCO 13 AASHTO T 176 Sand Fin	Mold Diameter # Gyrations (mm) at Ninitial 150 7 Mixture Mass % Air Voids to Compact (g) at Ninitial 4,740.0 14.5 External Party Oven Make/N Thermolyne/NCAT AP-2 Name COMBINE AASHTO T 304 e Aggr. Angularity ASTI ompacted Voids (%) % 1	X CHARACTER # Gyrations at NDesign 75 % Aid Voids at NDesign 4.0 SPHALT CONT fodel Furn 0x MOISTURE SUS Dry PSI Streng 105.7 D AGGREGATI	RISTICS (GYRA # Gyrations at NMaximum 115 % Air Voids at NMaximum 2.6 ENT TEST MET acce Temp (°C) 538.0 SCEPTIBILITY I gth Wet PSI St ECONSENSUS	Voids in Miner: Aggregate (VMA 13.8 Voids filled wit Asphalt (VFA) 71.0 THOD Sample Size f 2,000.0 DATA trength TSR Va PROPERTIES Ularity Flat / E rush 5:1	al Theoret) % Sp. Gra 2. h Theoret % Density 15 or C.F. lue Date ASTM D4791 longated Par	ical Max. v. (Gmm) 537 ical Max. v (Ibs/ft3) 57.9 Asphalt 0.47 of TSR [Bulk Sp. Grav. of Mixture (Gmb) 2.436 Bulk Density of Mixture (Ibs/ft3) 151.6 200 C.F. 0.00 Date of Boil Test
Design ESAL Range 0.3 to < 3 Million Bulk Sp. Grav. of Combined Aggr.(Gsb) 2.701 A.C. Test Method PTM No. 757 A.C. Supplier ONINCO 15 AASHTO T 176 Sand Fin	Mold Diameter # Gyrations (mm) at Ninitial 150 7 Mixture Mass % Air Voids to Compact (g) at Ninitial 4,740.0 14.5 External Party Oven Make/N Thermolyne/NCAT AP-2 Name COMBINE AASHTO T 304 e Aggr. Angularity AST	X CHARACTER # Gyrations at NDesign 75 % Aid Voids at NDesign 4.0 SPHALT CONT Iodel Furn 0x MOISTURE SUS Dry PSI Streng 100.7 D AGGREGATI M D5821 - Coarse	RISTICS (GYRA # Gyrations at NMaximum 115 % Air Voids at NMaximum 2.6 ENT TEST MET lace Temp (°C) 538.0 SCEPTIBILITY I gth Wet PSI St 100 E CONSENSUS e Aggregate Ang	Voids in Miner: Aggregate (VMA 13.8 Voids filled wit Asphalt (VFA) 71.0 THOD Sample Size f 2,000.0 DATA trength TSR Va CA PROPERTIES Ularity Flat / E rush 5:1	al Theoret) % Sp. Gra 2. h Theoret % Density 15 or C.F. lue Date ASTM D4791 longated Par	ical Max. v. (Gmm) 537 ical Max. ((Ibs/ft3) 57.9 Asphalt 0.47 of TSR 0.57 of TSR tricles	Bulk Sp. Grav. of Mixture (Gmb) 2.436 Bulk Density of Mixture (Ibs/ft3) 151.6 200 C.F. 0.00 Date of Boil Test Hisros
Design ESAL Range 0.3 to < 3 Million Bulk Sp. Grav. of Combined Aggr.(Gsb) 2.701 A.C. Test Method PTM No. 757 A.C. Supplier OVINCO 13 AASHTO T 176 Sand Fin Equivalency (%) Unco 89.6	Mold Diameter # Gyrations (mm) at Ninitial 150 7 Mixture Mass % Air Voids to Compact (g) at Ninitial 4,740.0 14.5 Arternal Party Oven Make/N Thermolyne/NCAT AP-2 Name COMBINE AASHTO T 304 e Aggr. Angularity mpacted Voids (%) % 1 45.9	X CHARACTER # Gyrations at NDesign 75 % Aid Voids at NDesign 4.0 SPHALT CONT Iodel Furn 0x MOISTURE SUS Dry PSI Streng 100.7 D AGGREGATI M D5821 - Coarse Face Crush 100.0	RISTICS (GYRA # Gyrations at NMaximum 115 % Air Voids at NMaximum 2.6 ENT TEST MET Nace Temp (°C) 538.0 SCEPTIBILITY I Gth Wet PSI Sti FOO E CONSENSUS e Aggregate Ang % 2 Face Cr 100.0	Voids in Miner; Aggregate (VMA 13.8 Voids filled wit Asphalt (VFA) 71.0 THOD Sample Size fr 2,000.0 DATA trength TSR Va C.S.C PROPERTIES ularity Flat / E rush 5:1 1.6	al Theoret)% Sp. Gra 2. h Theoret % Density 15 or C.F. lue Date 10 ASTM D4791 longated Par 3	ical Max. v. (Gmm) 537 ical Max. (Ibs/ft3) 57.9 Asphalt 0.47 of TSR 0.47	Bulk Sp. Grav. of Mixture (Gmb) 2.436 Bulk Density of Mixture (Ibs/ft3) 151.6 200 C.F. 0.00 Date of Boil Test Hisros Date of Boil Test Hisros 14.3
Design ESAL Range 0.3 to < 3 Million Bulk Sp. Grav. of Combined Aggr.(Gsb) 2.701 A.C. Test Method PTM No. 757 A.C. Supplier ONICO 13 AASHTO T 176 Sand Fin Equivalency (%) Unco	Mold Diameter # Gyrations (mm) at Ninitial 150 7 Mixture Mass % Air Voids to Compact (g) at Ninitial 4,740.0 14.5 A External Party Oven Make/N Thermolyne/NCAT AP-2 Name COMBINE AASHTO T 304 e Aggr. Angularity ASTI ompacted Voids (%) % 1 45.9	X CHARACTER # Gyrations at NDesign 75 % Aid Voids at NDesign 4.0 SPHALT CONT Nodel Furn 0x MOISTURE SUS Dry PSI Streng 100.7 D AGGREGATI M D5821 - Coarse Face Crush 100.0 Designed By Co	RISTICS (GYRA # Gyrations at NMaximum 115 % Air Voids at NMaximum 2.6 ENT TEST MET Nace Temp (°C) 538.0 SCEPTIBILITY I Gth Wet PSI Sti FOO E CONSENSUS e Aggregate Ang % 2 Face Cr 100.0	Voids in Miner; Aggregate (VMA 13.8 Voids filled wit Asphalt (VFA) 71.0 THOD Sample Size fr 2,000.0 DATA trength TSR Va PROPERTIES PROPERTIES Ularity Flat / E rush 5:1 1.6	al Theoret)% Sp. Gra 2. h Theoret % Density 15 or C.F. lue Date 10 ASTM D4791 longated Pai 3	ical Max. v. (Gmm) 537 ical Max. ((Ibs/ft3) 57.9 Asphalt 0.47 of TSR 0.57 of TSR Triticles	Bulk Sp. Grav. of Mixture (Gmb) 2.436 Bulk Density of Mixture (Ibs/ft3) 151.6 200 C.F. 0.00 Date of Boil Test THORES total % Reclaimed Agg. From RAP and / or RAS 14.3 4/1/11
Design ESAL Range 0.3 to < 3 Million Bulk Sp. Grav. of Combined Aggr.(Gsb) 2.701 A.C. Test Method PTM No. 757 A.C. Supplier Orticeo To AASHTO T 176 Sand Fin Equivalency (%) Unco 89.6 Designed By : designed	Mold Diameter # Gyrations (mm) at Ninitial 150 7 Mixture Mass % Air Voids to Compact (g) at Ninitial 4,740.0 14.5 External Party Oven Make/N Thermolyne/NCAT AP-2 Name COMBINE AASHTO T 304 e Aggr. Angularity ASTI ompacted Voids (%) % 1 45.9	X CHARACTER # Gyrations at NDesign 75 % Aid Voids at NDesign 4.0 SPHALT CONT Nodel Furn 0x MOISTURE SUS Dry PSI Streng 100.7 D AGGREGATI M D5821 - Coarse Face Crush 100.0 Designed By Co	RISTICS (GYRA # Gyrations at NMaximum 115 % Air Voids at NMaximum 2.6 ENT TEST MEI hace Temp (°C) 538.0 SCEPTIBILITY E gth Wet PSI SI 100 E CONSENSUS e Aggregate Ang % 2 Face Cr 100.0 ertification ID :	Voids in Miner; Aggregate (VMA 13.8 Voids filled wit Asphalt (VFA) 71.0 THOD Sample Size fr 2,000.0 DATA trength TSR Va PROPERTIES ularity Flat / E rush 5:1 1.6 ROBIN P: BATMAN	al Theoret)% Sp. Gra 2. h Theoret % Density 15 or C.F. lue Date Nor C.F. 10 ASTM D4791 longated Par 3	ical Max. v. (Gmm) 537 ical Max. (Ibs/ft3) 57.9 Asphalt 0.47 of TSR [0.47 Triticles SMA Designed	Bulk Sp. Grav. of Mixture (Gmb) 2.436 Bulk Density of Mixture (Ibs/ft3) 151.6 200 C.F. 0.00 Date of Boil Test Trioros total % Reclaimed Agg. From RAP and / or RAS 14.3 4/1/11
Design ESAL Range 0.3 to < 3 Million Bulk Sp. Grav. of Combined Aggr.(Gsb) 2.701 A.C. Test Method PTM No. 757 A.C. Supplier Orticeo To AASHTO T 176 Sand Fin Equivalency (%) Unco 89.6 Designed By : designe Submitted By : submi Approved By : approv	Mold Diameter # Gyrations (mm) at Ninitial 150 7 Mixture Mass % Air Voids to Compact (g) at Ninitial 4,740.0 14.5 External Party Oven Make/N Thermolyne/NCAT AP-2 Name COMBINE AASHTO T 304 e Aggr. Angularity ASTI ompacted Voids (%) % 1 45.9	X CHARACTER # Gyrations at NDesign 75 % Aid Voids at NDesign 4.0 SPHALT CONT Nodel Furn 0x MOISTURE SUS Dry PSI Streng 100.7 D AGGREGATI M D5821 - Coarse Face Crush 100.0 Designed By Co	RISTICS (GYRA # Gyrations at NMaximum 115 % Air Voids at NMaximum 2.6 ENT TEST MEI hace Temp (°C) 538.0 SCEPTIBILITY E gth Wet PSI St 100 E CONSENSUS e Aggregate Ang % 2 Face Cr 100.0 ertification ID : Certification ID :	Voids in Miner; Aggregate (VMA 13.8 Voids filled wit Asphalt (VFA) 71.0 THOD Sample Size fr 2,000.0 DATA trength TSR Va PROPERTIES ularity Flat / E rush 5:1 1.6 ROBIN P: BATMAN	al Theoret)% Sp. Gra 2. h Theoret % Density 15 or C.F. lue Date Nor C.F. 10 ASTM D4791 longated Par 3	ical Max. v. (Gmm) 537 ical Max. r (Ibs/ft3) 57.9 Asphalt 0.47 of TSR E 5705 Triticles SMA	Bulk Sp. Grav. of Mixture (Gmb) 2.436 Bulk Density of Mixture (Ibs/ft3) 151.6 200 C.F. 0.00 Date of Boil Test THORES Data % Reclaimed Agg. From RAP and / or RAS 14.3 4/1/11 7/21/15

Supplier Code

Material Class

Job-Mix Formula

MIX CHARACTERISTICS (GYRATORY)							
Design	Mold Diameter	# Gyrations	# Gyrations	# Gyrations	Voids in Mineral	Theoretical Max.	Bulk Sp. Grav. of
ESAL Range	(mm)	at Ninitial	at NDesign	at NMaximum	Aggregate (VMA) %	Sp. Grav. (Gmm)	Mixture (Gmb)
0.3 to < 3 Million	⁷ 150	7	75	115	13.8	2.537	2.436
Bulk Sp. Grav. of	Mixture Mass	% Air Voids	% Aid Voids	% Air Voids	Voids filled with	Theoretical Max.	Bulk Density of
Combined Aggr.(Gsb)	to Compact (g)	at Ninitial	at NDesign	at NMaximum	Asphalt (VFA) %	Density (lbs/ft3)	Mixture (lbs/ft3)
2.701	4,740.0	14.5	4.0	2.6	71.0	157.9	151.6

Note:

Theoretical Max. Density = 62.245 X Theoretical Max. Sp. Gr. That Is: 157.9 = 62.245 X 2.537

What does 62.245 represent? It is density of water in pounds per cubic feet (pcf).

157.9 is the number we enter into the nuclear gauge for field density measurement.

157.9 is also the base number we use to determine the field yield density.

Summary

- Major Pavement Distresses (Rutting, Fatigue Cracking, Low Temperature Cracking)
- Superpave System was developed to address pavement distresses
- Superpave Binder Performance Grade (PG) Pavement Temperature & Traffic
- Determination of Traffic Level (ESALs) and relation with Mix Compaction
- Superpave Mix Sizes (Max. Agg. Size vs. Nominal Max. Agg. Size)
- Job Mix Formula and Max. Sp. Gr. of Mix

